بررسی انتخاب مواد تغییر فازدهنده در سرمایش غیرفعال برای بهبود تهویه طبیعی و آسایش حرارتی در اقلیم گرم و خشک

نوع مقاله : علمی-ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، معماری و انرژی، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی، قزوین، ایران

2 دانشیار،گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی، قزوین، ایران

چکیده

بخش سرمایش بیشترین سهم مصرف انرژی ساختمانی به‌ویژه در اقلیم های گرم و خشک را به خود اختصاص داده است. ازاین‌رو تأمین انرژی موردنیاز  سیستم های سرمایشی و راهکارهای غیرفعال برای کاهش دمای محیط بسیار اهمیت می‌یابد. در این راستا به‌عنوان یک راهکار، مواد تغییر فاز دهنده با تغییر فاز خود، انرژی را ذخیره و به بهبود تهویه طبیعی و آسایش حرارتی ساکنین کمک می  نمایند. این مواد بر اساس ساختار شیمیایی و نقطه ذوب خود، دارای انواع گوناگونی هستند. در این جهت، انتخاب PCM مناسب، بر اساس ویژگی‌ها و کاربرد آن جهت بهبود تهویه طبیعی و سرمایش در ساختمان‌ها بسیار قابل‌توجه است. این پژوهش به بررسی ویژگی ها و رفتار مواد تغییر فاز دهنده جهت استفاده در سیستم های سرمایش غیرفعال ساختمانی و تهویه طبیعی به کمک مرور و تحلیل مطالعات و اسناد معتبر می‌پردازد. درنهایت با توجه به نوع و کاربرد ماده تغییر فاز دهنده،  PCM بهینه با نقطه ذوب مناسب جهت ایجاد شرایط آسایش حرارتی و تهویه طبیعی در محیط ارائه می‌شود. به‌عنوان یک نتیجه، استفاده از  PCM با نقطه ذوب 28 درجه سانتی گراد می تواند شرایط دمایی محیط را در محدوده آسایش حرارتی قرار دهد و نیز بهبود شرایط آسایش حرارتی و تهویه طبیعی را منجر گردد.

کلیدواژه‌ها


[1] Technology Roadmap. Solar Heating and Cooling. International energy Agency (IEA). Available from, 10-30-2012
[2] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications Energ Covers Manage ,45,1597–615, 2004.
[3] Energy Technology Perspectives (ETP), International Energy Agency, 2012.
[4] Guo, W., Liu, X. & Yuan, X . Study on natural ventilation design optimization based on CFD simulation for green buildings. Procedia Engineering, 121, 573-581, 2013.
[5] Tan, Z. & Deng, X. Assessment of natural ventilation potential for residential buildings across different climate zones in Australia. Atmosphere, 8, 177, 2017.
[6] Lizan, J., DE-BORJA-TORREJON, M., BARRIOS-PADURA, A., AUER, T. & CHACARTEGUI, R. Passive cooling through phase Change materials in buildings. A critical study of implementation  alternatives. AppliedEnergy, 254, 113658, 2019.
[7] Sun, X., Zhang, Q., Medina, M. A. & Liao, S. Performance of  A free-air cooling system for telecommunications base stations using phase change materials (PCMs): in-situ tests. Applied energy, 147, 325-334, 2015.
[8] Berardi, U. & Manca, M. The energy saving and indoor comfort improvements with latent thermal energy storage in building retrofits in Canada. Energy Procedia, 111, 462-471, 2017.
[9] Hu, Y. & Heiselberg, P. K. A new ventilated window with PCM  Heat exchanger—Performance analysis and design optimization. Energy  And  Buildings, 169, 185-194, 2018.
[10] Akeiber, H., Nejat, P., Majid, M. Z. A., Wahid, M. A., Jomehzadeh, F., Famileh, I. Z., Calutit, J. K., Hughes, B. R. B. R. & Zaki, S. A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470-1497, 2016.
[11] Zaki, S. A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable .EnergyReviews, 60, 1470-1497, 2016.
[12] De grasia, A., Navarro, L., Castell, A., Ruiz-pardo, Á. alvarez, S. & cabeza, L. F. Thermal analysis of a ventilated facade with PCM for cooling applications. Energy and Buildings, 65, 508-515, 2013.
[13] Isa, M. H. M., Zhao, X. & Yoshino, H. Preliminary study of passive cooling strategy using a combination of PCM and copper foam to increase thermal heat storage in building facade. Sustainability, 2, 2365-2381, 2010.
[14] Solgi, E., Hamedani, Z., Fernando, R., Kari, B. M. & Skates,  H. A parametric study of phase change material behaviour when used with night ventilation in different climatic zones. Building and Environment, 147, 327-336, 2019.
[15] Givoni, B. Passive low energy cooling of buildings, John Wiley & Sons. 1994.
[16] Waqas, A. & Din, Z. U. Phase change material (PCM) storage for Free cooling of buildings—a review. Renewable and sustainable energy reviews, 18, 607-625, 2013.
[17] Zhou, Z., Zhang, Z., Zuo, J., Hung, K. & Zhang, L. Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renewable and Sustainable Energy Reviews, 48, 692-703, 2015.
[18] Dhadian, N. S. & Khodadadi, J. Melting and convection of  Phase change materials in different shape containers: A review. Renewable and Sustainable Energy Reviews, 43, 449-477., 2015.
[19] Aydin, D., Casey, S. P. & Riffat, S. The latest advancements on thermochemical heat storage systems. Renewable and Sustainable Energy Reviews, 41, 356-367, 2015.
[20] Shalaby, S., Bek, M. & El-Sebaii, A. Solar dryers with PCM as energy storage medium: A review. Renewable and SustainableEnergy Reviews, 33, 110-116, 2014.
[21] Waterman, A. T. Xxi. On the positive ionization from certain hot salts,together with some observations on the electrical properties of molybdenite at high temperatures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33, 225-247, 1917.
[22] Bastani, A., Haghighat, F. & Kozinski, J. Designing  Building envelope with PCM wallboards: design tool  development. Renewable and Sustainable Energy Reviews, 31, 554-562, 2014.
[23] Demirbas, M. F. Thermal energy storage and phase change  materials:an overview. Energy Sources, Part B: Economics, Planning, and Policy, 1, 85-95, 2006.
[24] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy, ;30:313–32, 1983.
[25] Anisur, M., Mahfuz, M., Kibria, M., Saidor, R., Metsellar, I.& Mahlia, T. Curbing global warming with phase change Materials for energy storage. Renewable and Sustainable EnergyReviews, 18, 23-30, 2013.
[26] Cabeza LF, Castel A, Barreneche C, de Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sust Energy Rev, 15:1675–95, 2011.
[27] Kenisarin, M. M. Thermophysical properties of some organic  Phase change materials for latent heat storage. A review. Solar Energy,107,  553-575, 2014.
[28] De grasia, A. & Cabeza, L. F. Phase change materials and  Thermal energy storage for buildings. Energy and Buildings, 103, 414-419, 2015.
[29] Ehrali, M., Latibari, S. T., Mehrali, M., Mahlia, T. M. I.,   Sadeghinezhad, E. & Metselaar, H. S. C.Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Applied energy, 135, 339-349, 2014.
[30] Kamali, S. Review of free cooling system using phase change  Material for building. Energy and Buildings, 80, 131-136, 2014.
[31] Kenisarin, M. M.. Thermophysical properties of some organic  Phase change materials for latent heat storage. A review. Solar Energy, 107, 553-575, 2014.
[32] Tatsidjodoung, P., Le  pierres, N. & Luo, L A review of potential materials for thermal energy storage in building applications. Renewable and Sustainable Energy Reviews, 18, 327-349, 2013.
[33] Sharma, A., Tyagi, V. V., Chen, C. & Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 13, 318-345, 2009.
[34] Tyagi, V. V. & Buddhi, D. PCM thermal storage in buildings: a State of art. Renewable and Sustainable Energy Reviews, 11, 1146-1166, 2007.
[35] Rathod, M. K. & Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renewableand sustainable energy reviews, 18, 246-258, 2013.
[36] Mondal, S. Phase change materials for smart textiles–An  overview. Applied thermal engineering, 28, 1536-1550, 2008.
[37] Waqas A, Kumar S. Utilization of latent heat storage unit for comfort ventilation of buildings in hot and dry climates. International Journal Green Energy, 8:1–24, 2011.
[38] T. Silva, R. Vicente, N. Soares, V. Ferreira, Experimental testing and numericalmodelling of masonry wall solution with PCM incorporation: a passiveconstruction solution, Energy Build. 49, 235–245, 2012.
[39] Turnpenny J, Etheridge D, Reay D. Novel ventilation system for reducing air conditioning in buildings. Part II: testing of prototype. Applied Thermal Engineering, 21:1203–17, 2001.
[40] Marin J, Zalba B, Cabeza F, Mehling H. Free-cooling of buildings with phase change materials. International Journal of Refrigeration, 27:839–49, 2004.