مروری بر مطالعات رفتار باد به ویژه بر مناطق شهری

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، تبدیل انرژی، دانشگاه بین‌المللی امام خمینی، قزوین

2 استادیار، مهندسی مکانیک، دانشگاه بین‌المللی امام خمینی، قزوین

چکیده

امروزه مطالعه رفتار باد در محیط­های شهری مانند مجتمع­های ساختمانی، شهرک­ها، شهرها و ساختمان­ها بلند­مرتبه در کانون توجه قرار گرفته است. بررسی اثر دینامیک باد بر محیط­های شهری و بطور متقابل اثر شهر بر رفتار و الگوی باد، موضوع اصلی این تحقیقات می­باشد .امروزه مدل­سازی جریان باد به کمک دینامیک سیالات محاسباتی و نرم­افزار­های آن مطالعه رفتار باد و جریان­های ناشی از آن، از در معماری محیط­های هندسه­های شهری مانند مجموعه­ای از  مجتمع­­های ساختمان­ها ساختمانی، شهر­ها، شهرک­ها و ساختمان­ها بلند­مرتبه هم­اکنون در کانون توجه قرار گرفته است. به دلیل اثرات محیط­های چیدمان مجموعه ساختمان­های شهری بر الگوی جریان باد[U1] ، مطالعه و شبیه­سازی آن بسیار حائز اهمیت می­باشد. در دهه­ی 1950 با توجه به ضعف     کامپیوتر­های موجود، توسعه­ی مطالعات تجربی و آزمایشگاهی و اندازه­گیری­های هواشناسی برای بهبود پیش­بینی عددی آب و هوا آغاز شد. در دهه­ی 1960 با توسعه و بهبود مدل­های عددی، معادلات ابتدایی و همچنین افزایش توان محاسباتی کامپیوتر­ها، مدل­سازی­ها با هندسه­ی پیچیده و دقت بیشتر آغاز شد. در  دهه­ی 1970 مدل­های متوسط­گیری شده­ی رینولدزی تلاطم برای شبیه­سازی ارائه گردیدند. به علت کارآمدی خوب، این مدل­ها نیز در علم دینامیک باد شهری مورد استفاده قرار گرفت. در ادامه در سال­های 1980 مدل­های عددی حل این معادلات توسعه یافتند. برای ارزیابی نتایج بدست آمده در دهه­ی 1990 مدل­های پیشرفته­ی تلاطم ارائه و با نتایج آزمایش تونل باد مقایسه گردید. در سال­های اخیر ارائه­ی مدل­های جدید عددی باعث ارتقاء دقت پیش­بینی الگوی جریان و دینامیک باد بر روی ساختمان­ها و به­ویژه در سطح عابرین پیاده شده است. در مطالعه­ی پیش­رو برخی از کاستی­های این مقوله ارائه شده است. همچنین مقالات مهم و تأثیر گذار 65 سال گذشته در علم شبیه­سازی جریان باد مرور شده است.



 [U1]علت اهمیت مطالعات جریان باد در محیط های شهری هم در چکیده و به طور کامل تر در مقدمه ذکر گردد.

کلیدواژه‌ها


[1] J. Charney, “The Use of the Primitive Equations of Motion in Numerical Prediction,” Tellus, vol. 7, no. 1, pp. 22–26, 1955.Charney, J.G., Fjortoft, R., von Neumann, J., 1950. Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254.
[2] J. Smagorinsky, “The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere,” Q. J. R. Meteorol. Soc., vol. 79, pp. 342–366, 1953.Smagorinsky, J., 1953. The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Q. J. R. Meteorol. Soc. 79, 342–366.
[3] J. Charney, “The Use of the Primitive Equations of Motion in Numerical Prediction,” Tellus, vol. 7, no. 1, pp. 22–26, 1955.Charney, J.G., 1955. The use of the primitive equations of motion in numerical prediction. Tellus 7, 22–26.
[4] N. a. Phillips, “The general circulation of the atmosphere: A numerical experiment,” Q. J. R. Meteorol. Soc., vol. 82, pp. 123–164, 1956.Phillips, N.A., 1956. The general circulation of the atmosphere: a numerical experiment. Q. J. R. Meteorol. Soc. 82, 123–164.
[5] Smagorinsky, J., “On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region,” Mon. Weather Rev, vol. 86, no. 12, pp. 457–466, 1958.
[1] N. A. Phillips, “On the Problem of Initial Data for the Primitive Equations,” Tellus, vol. 12, no. 2, pp. 121–126, 1960. Smagorinsky, J., 1958. On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Mon. Weather Rev. 86 (12), 457–466.
[6] Phillips, N.A., 1960. On the problem of initial data for the primitive equations. Tellus 12, 121–126.
[1] J. Smagorinsky, “general circulation expriments with the primitive equations,” Weather Bur., vol. 91, no. 3, pp. 594–595, 1963. Smagorinsky, J., 1963. General circulation experiments with the primitive equations I. The basic experiment. Mon. Weather Rev. 91 (3), 99–164.
[7]
[8] A. Kasahara and W. M. Washington, “Ncar Global General Circulation Model of the Atmosphere,” Mon. Weather Rev., vol. 95, no. 7, pp. 389–402, 1967. Kasahara, A., & Washington, W. M. (1967). Ncar Global General Circulation Model of the Atmosphere. Monthly Weather Review, 95(7), 389–402.
[9] frederick G. Shuman and J. B. Hovermale, “An operational six-layer primitive equation model,” J. Appl. Meteorol., no. 4, p. 6, 1968. Shuman, F.G., Hovermale, J., 1968. An operational six-layer primitive equation model. J. Appl. Meteorol. 7, 525–547.
[10] R. P. Pearce, “The calculation of the sea breeze circulation in terms of the differential heating across the coast line.,” Quart. J. R. Meteorol. Soc, vol. 81, pp. 351–381, 1955.Pearce, R.P., 1955. The calculation of the sea breeze circulation in terms of the differential heating across the coast line. Quart. J. R. Meteorol. Soc. 81, 351–381.
[11] B. E. A. Fisher, “a theoretical study of the sea breeze,” J. Meteorol., vol. 18, pp. 216–233, 1960.
[12] M. a. Estoque, “the sea breeze as a function of the prevailing synoptic situation,” J. Atmos. Sci., vol. 19, pp. 244–250, 1962.
[1] J. Smagorinsky, “general circulation expriments with the primitive equations,” Weather Bur., vol. 91, no. 3, pp. 594–595, 1963.Fisher, E.L., 1961. A theoretical study of the sea breeze. J. Meteorol. 18, 216–233.
[1] Estoque, M.A., 1962. The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci. 19, 244–250.
[13] Smagorinsky, J. (1963). general circulation expriments with the primitive equations. Weather Bureau, 91(3), 594–595.
[14] michael A. fosberg, “airflow over a heated coastal mountain,” J. Appl. Meteorol., vol. 8, pp. 436–442, 1968.
[15] M. a. Estoque and C. M. Bhumralkar, “Flow Over a Localized Heat Source,” Mon. Weather Rev., vol. 97, no. 12, pp. 850–859, 1969.
[1] Y. Delage and P. a. Taylor, “Numerical studies of heat island circulations,” Boundary-Layer Meteorol., vol. 1, no. 2, pp. 201–226, 1970.Fosberg, M.A., 1969. Airflow over a heated coastal mountain. J. Appl. Meteorol. 8, 436–442.
[1] Estoque, M.A., Bhumralkar, C.M., 1969. Flow over a localized heat source. Mon. Weather Rev. 97, 850–859.
[16] Delage, Y., Taylor, P.A., 1970. Numerical studies of heat island circulations. Bound.- Layer Meteorol. 1, 201–226.
[17] R.N. Meroney, R.N., and T. Yamada, T., “1972. Numerical and physical simulation of a stratified airflow over a series of heated islands. ,” In: Proceedings of the Summer Simulation Conference, June 13–16, 1972, San Diego, California. 1972.
[18] C. E. Wallington and J. Portnall, “A numerical study of the wavelength and amplitude of lee waves,” Q. J. R. Meteorol. Soc., vol. 84, no. 359, pp. 38–45, 1958.Wallington, C.E., Portnall, J., 1958. A numerical study of the wavelength and amplitude of lee waves’, Quart. J. Roy. Meteorol. Soc. 84, 38–45.
[19] C. W. Hirt and J. L. Cook, “calculating three-dimensional flows around structures and over rough terrain,” J. Comput. Phys., vol. 10, pp. 324–340, 1972.Hirt, C.W., Cook, J.L., 1972. Calculating three-dimensional flows around structures and over rough terrain. Journal of Computational Physics 10, 324–340.
[20] W. Frost, J. R. Maus, and G. H. Fichtl, “A boundary-layer analysis of atmospheric motion over a semi-elliptical surface obstruction,” Boundary-Layer Meteorol., vol. 7, no. 2, pp. 165–184, 1974.
[21] D. M. deaves, “wind over hills: a numerical approach,” J. Ind. Aerodyn., vol. 1, pp. 371–391, 1976.
[1] russel G. Derickson and robert N. Meroney, “a simplified physics airflow model for evaluating wind power sites in complex terrain,” in summer computer simulation conference, 1977.Frost, W., Maus, J.R., Fichtl, G.H., 1974. A boundary-layer analysis of atmospheric motion over a semi-elliptical surface obstruction. Bound.-Layer Meteorol. 7, 165–184.
[1] Deaves, D.M., 1975. Wind over hills: a numerical approach. J. Wind Eng. Ind. Aerodyn. 1, 371–391.
[22] Derickson, R.G., Meroney, R.N., 1977. A simplified physics airflow model for evaluating wind power sites in complex terrain. In: Proceedings of the Summer Computer Simulation Conference, July 18–20, 1977, Hyatt Regency, Chicago, Illinois.
[23] D.Vasilic-Melling, “D., 1977. Three dimensional turbulent flow past rectangular bluff bodies”, (Ph.D. thesis). Imperial College of Science and Technology, London., 1977.
[24] D. A. Paterson and C. J. Apelt, “computation of wind flows over three-dimensional buildings,” J. Wind Eng. Ind. Aerodyn., vol. 24, pp. 193–213, 1986.
[25] D. A. Paterson and C. J. Apelt, “Simulation of wind flow around three-dimensional buildings,” Build. Environ., vol. 24, no. 1, pp. 39–50, 1989.
[1] S. Murakami and A. Mochida, “3-D numerical simulation of airflow around a cubic model by means of the k-e models,” J. Wind Eng. Ind. Aerodyn., vol. 31, pp. 283–303, 1988.Paterson, D.A., Apelt, C.J., 1986. Computation of wind flows over three-dimensional buildings. J. Wind Eng. Ind. Aerodyn. 24, 192–213.
[1] Paterson, D. A., & Apelt, C. J. (1989). Simulation of wind flow around three-dimensional buildings. Building and Environment, 24(1), 39–50.
[26] Murakami, S., Mochida, A., 1988. 3-D numerical simulation of airflow around a cubic model by means of the k–ε model. J. Wind Eng. Ind. Aerodyn. 31 (2–3), 283–303.
[27] T. Hanson, T., and D.M. Summers, D.M., and C.B.Wilson, “, C.B., 1986. Validation of a computer simulation of wind flow over a building model. ,” Build. Environ. 21, 97–111., 1986.
[28] S. Murakami, “Numerical simulation of turbulent flowfield around cubic model current status and applications of model and LES,” J. Wind Eng. Ind. Aerodyn., vol. 33, pp. 139–152, 1990.
[29] H. Montazeri, B. Blocken, W. D. Janssen, and T. van Hooff, “CFD evaluation of new second-skin facade concept for wind comfort on building balconies: Case study for the Park Tower in Antwerp,” Build. Environ., vol. 68, pp. 179–192, 2013.
[30] H. Montazeri, B. Blocken, W. D. Janssen, and T. van Hooff, “CFD evaluation of new second-skin facade concept for wind comfort on building balconies: Case study for the Park Tower in Antwerp,” Build. Environ., vol. 68, pp. 179–192, 2013.
[1] Murakami, S. (1990). Computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 36, 517–538.
[1] Montazeri, H, Blocken, B., 2013. CFD simulation of wind-induced pressure coeffi-cients on buildings with and without balconies: validation and sensitivity analysis. Build. Environ. 60, 137–149.
[1] Montazeri, H, Blocken, B, Janssen, WD, van Hooff, T., 2013. CFD evaluation of new second-skin facade concept for wind comfort on building balconies: case-study for the Park Tower in Antwerp. Build. Environ. 68, 179–192.
[31] Bottema, M., 1993. Wind Climate and Urban Geometry, (Ph.D. thesis). Eindhoven University of Technology (212 p)
[32] J. D. Paterson, D A Holms, “computation of wind flow over topography,” J. Wind Eng. Ind. Aerodyn., vol. 43, pp. 1–6, 1993.Paterson, D A Holms, J. D. (1993). computation of wind flow over topography. Journal of Wind Engineering and Industrial Aerodynamics, 43, 1–6.
[33] Y. Ohya, M. Tatsuno, Y. Nakamura, and H. Ueda, “A thermally stratified wind tunnel for environmental flow studies,” Atmos. Environ., vol. 30, no. 16, pp. 2881–2887, 1996.Ohya, Y., Tatsuno, M., Nakamura, Y., & Ueda, H. (1996). A thermally stratified wind tunnel for environmental flow studies. Atmospheric Environment, 30(16), 2881–2887.
[34] W. Rodi, “Comparison of LES and RANS calculations of the flow around bluff bodies,” J. Wind Eng. Ind. Aerodyn., vol. 69–71, pp. 55–75, 1997.Rodi, W. (1997). Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 69-71, 55–75.
[35] T. Stathopoulos, “Computational wind engineering: Past achievements and future challenges,” J. Wind Eng. Ind. Aerodyn., vol. 67–68, pp. 509–532, 1997.
[36] S. Murakami, “Overview of turbulence models applied in CWE–1997,” J. Wind Eng. Ind. Aerodyn., vol. 74–76, pp. 1–24, 1998.
[37] S. Murakami, R. Ooka, A. Mochida, S. Yoshida, and Sangjin Kim, “CFD analysis of wind climate from human scale to urban scale,” J. Wind Eng. Ind. Aerodyn., vol. 81, no. 1–3, pp. 57–81, 1999.
[38] J. He and C. C. . Song, “Evaluation of pedestrian winds in urban area by numerical approach,” J. Wind Eng. Ind. Aerodyn., vol. 81, no. 1–3, pp. 295–309, 1999.
[39] M. Casey and T. Wintergerste, “ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD-Best Practice Guidelines,” Eur. Res. Community Flow, Turbul, no. January, pp. 0–3, 2000.
[40] H. Lubcke, St. Schmidt, T. Rung, and F. Thiele, “Comparison of LES and RANS in bluff body flows,” J. Wind Eng. nad Ind. Aerodyn., vol. 89, pp. 1471–1485, 2001.
[41] A. Ferreira, A. Sousa, and D. Viegas, “Prediction of building interference effects on pedestrian level comfort,” J. Wind Eng. Ind. Aerodyn., vol. 90, pp. 305–319, 2002.
[1] Stathopoulos, T., 1997. Computational Wind Engineering: past achievements and future challenges. J. Wind Eng. Ind. Aerodyn. 67–68, 509–532.
[1] Murakami, S., 1998. Overview of turbulence models applied in CWE-1997. J. Wind Eng. Ind. Aerodyn. 74-76, 1–24.
[1] Murakami, S., Ooka, R., Mochida, A., Yoshida, S., & Sangjin Kim. (1999). CFD analysis of wind climate from human scale to urban scale. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 57–81.
[1] He, J., Song, C.C.S., 1999. Evaluation of pedestrian winds in urban area by numerical approach. J. Wind Eng. Ind. Aerodyn. 81, 295–309.
[1] Casey, M., & Wintergerste, T. (2000). ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD-Best Practice Guidelines. European Research Community on Flow, Turbulence …, (January), 0–3.
[1] Lubcke H, Schmidt St., Rung T, & Thiele F. (2001). Comparison of LES and RANS in bluff body flows. Journal of Wind Engineering Nad Industrial Aerodynamics, 89, 1471–1485.
[1] Ferreira, A., Sousa, A., & Viegas, D. (2002). Prediction of building interference effects on pedestrian level comfort. Journal of Wind Engineering and Industrial Aerodynamics, 90, 305–319.
[42] B. Blocken and J. Carmeliet, “Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples,” J. Build. Phys., vol. 28, no. 2, pp. 107–159, 2004.
[1] B. Blocken, B., Carmeliet, J., 2004b. Pedestrian wind environment around buildings: literature review and practical examples. J. Therm. Envel. Build. Sci. 28 (2), 107–159.
[43] Blocken, B., and S. Roels, S., and J. Carmeliet, J., “2004. Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system,”. J. Wind Eng. Ind. Aerodyn. 92 (10), 849–873., 2004.
[44] A. Zhang, A., C. Gao, C., & L. Zhang, L. (2005). “Numerical simulation of the wind field around different building arrangements. ,” Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 891–904., 2005.
[45] D. Hamlyn and R. Britter, “A numerical study of the flow field and exchange processes within a canopy of urban-type roughness,” Atmos. Environ., vol. 39, no. 18, pp. 3243–3254, 2005.Hamlyn, D., & Britter, R. (2005). A numerical study of the flow field and exchange processes within a canopy of urban-type roughness. Atmospheric Environment, 39(18), 3243–3254.
[46] T. Stathopoulos, “Pedestrian level winds and outdoor human comfort,” J. Wind Eng. Ind. Aerodyn., vol. 94, no. 11, pp. 769–780, 2006.
[1] B. Stathopoulos, T. (2006). Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, 94(11), 769–780.
[47] Blocken and, B., & J. Carmeliet, J. (2007). “Validation of CFD simulations of wind-driven rain on a low-rise building facade. ,” Building and Environment, 42(7), 2530–2548., 2007.
[48] B. Blocken, B.,, J. Carmeliet, J., & and T. Stathopoulos, T. (2007). “CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. ,” Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11), 941–962. , 2007.
[49] B. Blocken, T. B., Stathopoulos, T., & and J. Carmeliet, J. (2007). “CFD simulation of the atmospheric boundary layer: wall function problems. ,” Atmospheric Environment, 41(2), 238–252,. 2007.
[50] R. Yoshie, a. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, and T. Shirasawa, “Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan,” J. Wind Eng. Ind. Aerodyn., vol. 95, no. 9–11, pp. 1551–1578, 2007.Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., Shirasawa, T., 2007. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. J. Wind Eng. Ind. Aerodyn. 95 (9–11), 1551–1578.
[51] A. Mochida and I. Y. F. Lun, “Prediction of wind environment and thermal comfort at pedestrian level in urban area,” J. Wind Eng. Ind. Aerodyn., vol. 96, no. 10–11, pp. 1498–1527, 2008.
[1] A. Mochida, A., Lun, I.Y.F., 2008. Prediction of wind environment and thermal comfort at pedestrian level in urban area. J. Wind Eng. Ind. Aerodyn. 96 (10–11), 1498–1527.
[52] Mochida, Y. A., Tabata, T. Y., Iwata, and H. T., Yoshino, H., 2008. “Examining tree canopy models for CFD prediction of wind environment at pedestrian level. ,” J. Wind Eng. Ind. Aerodyn. 96 (10–11), 1667–1677., 2008.
[53] B. Blocken and J. Persoon, “Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard,” J. Wind Eng. Ind. Aerodyn., vol. 97, no. 5–6, pp. 255–270, 2009.
[1] K. Nore, B. Blocken, and J. V. Thue, “On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: Coupled and decoupled simulations and modelling limitations,” Build. Environ., vol. 45, no. 8, pp. 1834–1846, 2010.Blocken, B., Persoon, J., 2009. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. J. Wind Eng. Ind. Aerodyn. 97 (5–6), 255–270.
[54] Nore, K., Blocken, B., & Thue, J. V. (2010). On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: Coupled and decoupled simulations and modelling limitations. Building and Environment, 45(8), 1834–1846.
[55] J. Green and J. Quest, “A short history of the European Transonic Wind Tunnel ETW,” Prog. Aerosp. Sci., vol. 47, no. 5, pp. 368–319, 2011.Green, J., & Quest, J. (2011). A short history of the European Transonic Wind Tunnel ETW. Progress in Aerospace Sciences, 47(5), 368–319.
[56] B. Blocken, T. B., van Hooff, L. T., Aanen, L., and B. Bronsema, B., 2011b., “Computational analysis of the performance of a venturi-shaped roof for natural ventilation: venturi-effect versus wind-blocking effect. ,” Comput. Fluids 48 (1), 202–213., 2011.
[57] B. Blocken and C. Gualtieri, “Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics,” Environ. Model. Softw., vol. 33, no. 0, pp. 1–22, 2012.
[1] P. Gousseau, B. Blocken, and G. J. F. van Heijst, “CFD simulation of pollutant dispersion around isolated buildings: On the role of convective and turbulent mass fluxes in the prediction accuracy,” J. Hazard. Mater., vol. 194, pp. 422–434, 2011.Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling and Software, 33(0), 1–22.
[58] Gousseau, P., Blocken, B., & van Heijst, G. J. F. (2011). CFD simulation of pollutant dispersion around isolated buildings: On the role of convective and turbulent mass fluxes in the prediction accuracy. Journal of Hazardous Materials, 194, 422–434.
[59] J. F. Barlow, “Progress in observing and modelling the urban boundary layer,” Urban Clim., vol. 44, Aug. 2014.Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 44.
[60] Y. Toparlar, B. Blocken, P. Vos, G.-J. Van Heijst, W. D. Janssen, T. van Hooff, H. Montazeri, and H. Timmermans, “CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam,” Build. Environ., vol. submitted , pp. 1–12, 2014.Toparlar, Y., Blocken, B., Vos, P., Heijst, G.-J. Van, Janssen, W. D., van Hooff, T., … Timmermans, H. (2014). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment, submitted , 1–12.
[61] K. De Ridder, D. Lauwaet, and B. Maiheu, “UrbClim – A fast urban boundary layer climate model,” Urban Clim., vol. 12, pp. 21–48, 2015.De Ridder, K., Lauwaet, D., & Maiheu, B. (2015). UrbClim – A fast urban boundary layer climate model. Urban Climate, 12, 21–48.
[62] Y. Tominaga, S. Akabayashi, T. Kitahara, and Y. Arinami, “Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations,” Build. Environ., vol. 84, pp. 204–213, 2015.Tominaga, Y., Akabayashi, S., Kitahara, T., & Arinami, Y. (2015). Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations. Building and Environment, 84, 204–213.
[63] E. C. Joubert, T. M. Harms, and G. Venter, “Computational simulation of the turbulent flow around a surface mounted rectangular prism,” J. Wind Eng. Ind. Aerodyn., vol. 142, pp. 173–187, 2015.Joubert, E. C., Harms, T. M., & Venter, G. (2015). Computational simulation of the turbulent flow around a surface mounted rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics, 142, 173–187.
[64] B. Wang, L. D. Cot, L. Adolphe, S. Geoffroy, and J. Morchain, “Estimation of wind energy over roof of two perpendicular buildings,” Energy Build., vol. 88, no. 2015, pp. 57–67, 2015.
[1] P. Moonen, T. Defraeye, V. Dorer, B. Blocken, and J. Carmeliet, “Urban Physics: Effect of the micro-climate on comfort, health and energy demand,” Front. Archit. Res., vol. 1, no. 3, pp. 197–228, 2012.Wang, B., Cot, L. D., Adolphe, L., Geoffroy, S., & Morchain, J. (2015). Estimation of wind energy over roof of two perpendicular buildings. Energy and Buildings, 88(2015), 57–67.
[65] Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3), 197–228.