مدل‌سازی و تجمیع سیستم نوین ترکیبی ذخیره‌سازی انرژی هوای فشرده و هیدروالکتریکی تلمبه ذخیره‌ای در شبکه انرژی باد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی، گروه تخصصی صنعت و انرژی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه تخصصی مهندسی صنایع دریایی، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه تخصصی صنعت و انرژی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.52547/jrenew.10.2.1

چکیده

افزایش تقاضای انرژی و ایجاد توازن بین تولید و مصرف از چالش‌های مهم اپراتورهای شبکه برق است. از طرفی محدودیت‌های زیست‌محیطی و اقتصادی مانع از حل این مشکلات از روش‌های متداول مانند مصرف سوخت‌های فسیلی و احداث نیروگاه جدید متناسب با رشد مصرف انرژی می‌شود. سیستم ترکیبی ذخیره‌سازی انرژی هوای فشرده و هیدروالکتریکی تلمبه ذخیره‌ای به‌علت مزایایی از قبیل عدم نیاز به سوخت فسیلی و مقیاس‌پذیری این قابلیت را دارد تا با ذخیره‌سازی انرژی مازاد تولید، مانع از هدررفت آن شود. از دیگر فاکتورهای مهم برای استفاده از این سیستم، کنترل تولید توان است. به‌دلیل نوین بودن سیستم ترکیبی ذخیره‌سازی انرژی هوای فشرده و هیدروالکتریکی تلمبه ذخیره‌ای پژوهش‌های اندکی به بررسی عملکرد آن همراه با سیستم‌های تولید انرژی پرداخته‌اند. در مقاله حاضر عملکرد این سیستم ذخیره‌سازی انرژی ترکیبی در حالت تجمیع شده با نیروگاه بادی و شبکه برق مورد تحلیل و بررسی قرار گرفت. بدین‌منظور اطلاعات بادی ایستگاه منتخب استخراج و مدل‌سازی نرم‌افزاری شد، سپس سیستم جامع مدل‌سازی نرم‌افزاری شد و کارایی آن با پارامترهای منتخب برای یک چرخه مورد تحلیل قرار گرفت. در انتها رفتار سیستم در کاربرد با شبکه برق و نیروگاه بادی تحت سناریوهای مختلف برای مدت یک هفته شبیه‌سازی نرم‌افزاری شد. بنابر نتایج پژوهش، بازدهی رفت و برگشتی سیستم حدود 49 درصد و این مقدار در اولین چرخه حدود 7 درصد کم‌تر از چرخه‌های بعدی است. همچنین مشخص شد این سیستم پتانسیل مناسبی جهت یکپارچه‌سازی با نیروگاه بادی و شبکه برق دارد و با طراحی مناسب می‌تواند توان مصرفی مورد نیاز را به‌طور بی‌وقفه تامین کند.

کلیدواژه‌ها


[1]   F. S. Vieira, J. A. P. Balestieri, and J. A. Matelli, Applications of compressed air energy storage in cogeneration systems, Energy, Vol. 214, p. 118904, 2021.
[2]   M. Khazali, F. Azarsina, and A. H. Kani, Investigation of Novel Polygeneration Systems Based on Compressed Air Storage, Journal of Renewable and New Energy, Vol. 6, No. 2, pp. 94–104, 2019.
[3]   M. Khazali and A. Abdalisousan, An Overview of Novel Energy Storage Systems with Air Compression Method, Iranian journal of Energy, Vol. 23, No. 1, pp. 47–82, 2020.
[4]   Z. Tong, Z. Cheng, and S. Tong, A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization, Renewable and Sustainable Energy Reviews, Vol. 135, No. September 2019, p. 110178, 2021.
[5]   M. Khazali, F. Azarsina, and A. . Kani, Analysis and investigation of the novel energy storage system of compressed air and pumped storage hydropower, in First National Conference on Enhanced Engineering in the Environment, 2019.
[6]   G. Venkataramani, P. Parankusam, V. Ramalingam, and J. Wang, A review on compressed air energy storage – A pathway for smart grid and polygeneration, Renewable and Sustainable Energy Reviews, Vol. 62. 2016.
[7]   W. He and J. Wang, Optimal selection of air expansion machine in Compressed Air Energy Storage: A review, Renewable and Sustainable Energy Reviews, Vol. 87, No. July 2016, pp. 77–95, 2018.
[8]   C. Diyoke and C. Wu, Thermodynamic analysis of hybrid adiabatic compressed air energy storage system and biomass gasification storage (A-CAES + BMGS) power system, Fuel, Vol. 271, No. July 2019, p. 117572, 2020.
[9]   X. Xu et al., Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method, Energy Conversion and Management, Vol. 211, p. 112759, 2020.
[10] C. Jakiel, S. Zunft, and A. Nowi, Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES, International Journal of Energy Technology and Policy, Vol. 5, No. 3, pp. 296–306, 2007.
[11] T. Thomasson, M. Tähtinen, A. Tapani, and T. Sihvonen, Dynamic analysis of adiabatic CAES with electric resistance heating, in Energy Procedia, 2017, Vol. 135, pp. 464–471.
[12] L. X. Chen, M. N. Xie, P. P. Zhao, F. X. Wang, P. Hu, and D. X. Wang, A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid, Applied Energy, Vol. 210, No. September 2017, pp. 198–210, 2018.
[13] Q. Zhou, Q. He, C. Lu, and D. Du, Techno-economic analysis of advanced adiabatic compressed air energy storage system based on life cycle cost, Journal of Cleaner Production, Vol. 265, p. 121768, 2020.
[14] J. Ren, A. Zhang, and X. Wang, Modelling and Control of Advanced Adiabatic Compressed Air Energy Storage under Power Tracking Mode Considering Off-design Generating Conditions, Energy, p. 119525, 2020.
[15] A. G. Olabi, C. Onumaegbu, T. Wilberforce, M. Ramadan, M. A. Abdelkareem, and A. H. Al – Alami, Critical review of energy storage systems, Energy, Vol. 214, p. 118987, 2021.
[16] S. Zhou, Y. He, H. Chen, Y. Xu, and J. Deng, Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process, Energy, Vol. 205, p. 118050, 2020.
[17] T. B. Johansson, K. McCormick, L. Neij, and W. Turkenburg, The Potentials of Renewable Energy, 2008.
[18] M. Norouzi, M. Yeganeh, and T. Yusaf, Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran), Renewable Energy, Vol. 163, pp. 300–319, 2021.
[19] H. S. Dhiman and D. Deb, Wake management based life enhancement of battery energy storage system for hybrid wind farms, Renewable and Sustainable Energy Reviews, Vol. 130, No. August 2019, p. 109912, 2020.
[20] Y. Li, W. Gao, and Y. Ruan, Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan, Renewable Energy, Vol. 127, pp. 514–523, 2018.
[21] G. Aquila, A. R. de Queiroz, P. Rotela Junior, L. C. S. Rocha, E. de O. Pamplona, and P. P. Balestrassi, Contribution for bidding of wind-photovoltaic on grid farms based on NBI-EFA-SNR method, Sustainable Energy Technologies and Assessments, Vol. 40, No. May, p. 100754, 2020.
[22] J. E. Mason and C. L. Archer, Baseload electricity from wind via compressed air energy storage (CAES), Renewable and Sustainable Energy Reviews, Vol. 16, No. 2, pp. 1099–1109, 2012.
[23] P. Zhao, P. Wang, W. Xu, S. Zhang, J. Wang, and Y. Dai, The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis, Energy, Vol. 215, p. 119167, 2021.
[24] D. Shaw, J. Y. Cai, and C. T. Liu, Efficiency analysis and controller design of a continuous variable planetary transmission for a CAES wind energy system, Applied Energy, Vol. 100, pp. 118–126, 2012.
[25] E. A. Bouman, M. M. Øberg, and E. G. Hertwich, Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES), Energy, Vol. 95, pp. 91–98, 2016.
[26] F. de Bosio and V. Verda, Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market, Applied Energy, Vol. 152, pp. 173–182, 2015.
[27] E. Akbari, R. A. Hooshmand, M. Gholipour, and M. Parastegari, Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets, Energy, Vol. 171, pp. 535–546, 2019.
[28] P. Aliasghari, M. Zamani-Gargari, and B. Mohammadi-Ivatloo, Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant, Energy, Vol. 160, pp. 668–677, 2018.
[29] S. Zhang, S. Miao, Y. Li, B. Yin, and C. Li, Regional integrated energy system dispatch strategy considering advanced adiabatic compressed air energy storage device, International Journal of Electrical Power and Energy Systems, Vol. 125, No. September 2020, p. 106519, 2021.
[30] S. Hameer and J. L. van Niekerk, A review of large-scale electrical energy storage, International Journal of Energy Research, Vol. 39, No. 9, pp. 1179–1195, 2015.
[31] E. Yao, H. Wang, and G. Xi, A Novel Pumped Hydro Combined with Compressed Air Energy, in Storing Energy, T. M. Letcher, Ed. New York: Elsevier, 2016, pp. 155–166.
[32] H. Mozayeni, X. Wang, M. Negnevitsky, and G. Kefayati, Study of effect of heat transfer in an air storage vessel on performance of a pumped hydro compressed air energy storage system, International Journal of Heat and Mass Transfer, Vol. 148, No. xxxx, p. 119119, 2020.
[33] Potential Assessment and Evaluation of Renewable and Clean Resources, Renewable Energy and Energy Efficiency Organization. [Online]. Available: http://www.satba.gov.ir/fa/assessmentofrenewableandcleanresources. [Accessed: 11-Jul-2020].
[34] F. M. Vanek and L. D. Albright, Energy Systems Engineering, New York, US: McGraw-Hill, 2009.
[35] L. Bauer, GE General Electric GE 1.5sl, GE General Electric. .
[36] Y. A. Cengel and M. A. Boles, Thermodynamics; an Engineering Approach, 8th Edition, New York: McGraw-Hill Education, 2015, pp. 359–366.
[37] A. Laugier and J. Garai, Derivation of the ideal gas law, Journal of Chemical Education, Vol. 84, No. 11, pp. 1832–1833, 2007.
[38] E. Vagnoni, L. Andolfatto, R. Guillaume, P. Leroy, and F. Avellan, Oxygen diffusion through air–water free surfaces in a pump–turbine operating in condenser mode, International Journal of Multiphase Flow, Vol. 112, pp. 183–192, 2019.
[39] M. Binama, W. T. Su, X. Bin Li, F. C. Li, X. Z. Wei, and S. An, Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review, Renewable and Sustainable Energy Reviews, Vol. 79, No. February, pp. 148–179, 2017.
[40] V. L. Streeter and E. B. Wylie, Fluid Mechanics, Sixth., New York: McGraw-Hill, 1975.
[41] R. Rayner, REGENERATIVE TURBINE PUMPS, in Pump Users Handbook, Elsevier, 1995, pp. 35–37.
[42] S. Chitrakar, B. W. Solemslie, H. P. Neopane, and O. G. Dahlhaug, Review on numerical techniques applied in impulse hydro turbines, Renewable Energy, Vol. 159, pp. 843–859, 2020.
[43] C. C. Warnick, M. Howard, J. L.Carson, and L. H. Sheldon, Hydropower Engineering, New Jersey: Prentico-Hall, Inc., Englewood Cliffs, 1984.
[44] A. Ulazia, J. Sáenz, G. Ibarra-Berastegi, S. J. González-Rojí, and S. Carreno-Madinabeitia, Global estimations of wind energy potential considering seasonal air density changes, Energy, Vol. 187, 2019.
[45] M. Khazali, F. Azarsina, and A. . Kani, Energy analysis and evaluation of an innovative hybrid compressed air and pumped hydroelectric energy storage system, Modares Mechanical Engineering, Vol. 22, No. 4, pp. 225–241, 2022.
[46] H. Wang, L. Wang, X. Wang, and E. Yao, A Novel Pumped Hydro Combined with Compressed Air Energy Storage System, Energies, Vol. 6, No. 3, pp. 1554–1567, 2013.
[47] Electricity Reports - U.S. Energy Information Administration (EIA), U.S. Energy Information Administration (EIA). [Online]. Available: https://www.eia.gov/electricity/reports.php#/T194. [Accessed: 17-Aug-2020].
[48] M. Karimi, H. Karami, M. Gholami, H. Khatibzadehazad, and N. Moslemi, Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method, Energy, Vol. 144, No. December, pp. 928–940, 2018.
[49] M. H. Asgari and H. Monsef, Market power analysis for the Iranian electricity market, Energy Policy, Vol. 38, No. 10, pp. 5582–5599, 2010.
[50] M. Khazali and A. kaabi Nejadian, A study on the compressed air energy storage system, Mechanical Engineering Journal, Vol. 29, No. 3, pp. 47–59, 2020.