بررسی تاثیر فرم هندسی ساختمان بر عملکرد جریان باد در فضای باز مجتمع های مسکونی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه معماری، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

جریان هوا یکی از مهم­ترین مولفه­های آسایش در فضای باز است که تحت تاثیر فاکتو­رهای متعدد از جمله هندسه ساختمان­ها قرار می­گیرد. پژوهش حاضر به بررسی تاثیر تغییرات هندسی ساختمان­ها بر جریان باد پیرامونی بلوک­ها در یک مجتمع مسکونی پرداخت. نمونه مورد مطالعه یک مجتمع مسکونی متشکل از 9 بلوک میان مرتبه در شهر تهران است. در این راستا، فرم هندسی بلوک­ها در سه حالت متفاوت شبیه­سازی شد و تاثیر آن بر رفتار باد در فضای باز مجتمع مورد ارزیابی قرار گرفت. روش تحقیق در بخش اول روش توصیفی با ابزار مطالعات کتابخانه­ای و راهبرد پژوهش در بخش دوم، راهبرد شبه­تجربی است. شبیه­سازی­هایCFD  و تحلیل­های عددی با استفاده از نرم­افزار 3.0.16 Ansys Airpak انجام گرفت. نتایج حاصل از شبیه­سازی­های عددی تاثیر تغییرات هندسی بنا بر الگوی جریان باد پیرامونی ساختمان­ها در فضای باز مجتمع را به اثبات رسانید. نتیجه این تغییرات، افزایش 13.83 درصدی متوسط سرعت و 6.76 درصدی ماکزیمم سرعت جریان باد در فضای باز را به دنبال داشت. از میان انواع فرم­های بررسی شده، فرم T شکل با هدایت مناسب جریان باد، باعث بهبود رفتار باد در حوزه­های میان­بلوکی و حوزه­های میان­ردیفی شد. با این حال، فرم های L شکل (مدل M3) با انسداد جریان باد، کاهش قابل ملاحظه سرعت جریان در حوزه­های میان بلوک­های هم­ردیف را به همراه داشت.

کلیدواژه‌ها


[1] UN-DESA. 68% of the world population projected to live in urban  areas by 2050, says UN. 2018, Accessed 10 April 2021; https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html.
[2] A. Chokhachian, K. Perini, S. Giulini, and T. Auer, Urban performance and density: Generative study on interdependencies of urban form and environmental measures, Sustainable Cities and Society, Vol. 53, p. 101952, 2020. doi:https://doi.org/10.1016/j.scs.2019.101952
[3] B.J. He, L. Ding, and D. Prasad, Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence, Sustainable Cities and Society, Vol. 60, p. 102289, 2020. doi:https://doi.org/10.1016/j.scs.2020.102289
[4] N.G. Edward, Designing High-Density Cities For Social and Environmental Sustainability, First Edition, UK: Routledge, 2015.
[5] J. Zhang, L. Xu, V. Shabunko, S.E.R. Tay, H. Sun, S. S. Y, Lau, T. Reindl, Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city, Applied Energy, Vol. 240, pp. 513-533, 2019. 
[6] G. Chiesa, and M. Grosso, Geo-climatic applicability of natural ventilative cooling in the Mediterranean area, Energy and Buildings, Vol. 107, pp. 376-391, 2015.  doi:https://doi.org/10.1016/j.enbuild.2015.08.043
[7] M.S. Fernandes, E. Rogrigues, A.R. Gaspar, J.J. Costa, A. Gomes, The contribution of ventilation on the energy performance of small residential buildings in the Mediterranean region, Energy, Vol. 191, p. 116577, 2010.
[8] A. Einifar, S.N. Ghazizadeh, Typology of residential complexes in Tehran with open space criteria, Armanshahr Journal. Vol. 3, No. 5, pp. 35-45, 2010. (in Persian).
[9] T.S. Boutet, Controlling Air Movement: A Manual for Architects and Builders, New York: McGraw-Hill Book Company, 1987.
[10] T. Kubota and S. Ahmad, Wind Environment Evaluation of Neighborhood Areas in Major Towns of Malaysia, Journal of Asian Architecture and Building Engineering, Vol 5, No. 1, pp. 199-206, 2006. doi:10.3130/jaabe.5.199.
[11] M. Osman, Evaluating and enhancing design for natural ventilation in walk-up public housing blocks in the Egyptian desert climatic design region, Doctoral Thesis, Dundee University, Dundee, 2011.
[12] B. Hong and B. Lin, Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement, Renewable Energy, Vol 73, pp. 18-27, 2015. doi:http://dx.doi.org/10.1016/j.renene.2014.05.060
[13] X. Ying, Y. Wang, W. Li, Z. Liu, and G. Ding, Group layout pattern and outdoor wind environment of enclosed office buildings in Hangzhou, Energies, Vol. 3, No. 2, 2020, doi:10.3390/en13020406.
[14] Y. Jiang, C. Wu, and M. teng, Impact of residential building Layouts on microclimate in a high temperature and high humidity region, Sustainability, Vol. 12, No. 13, 2020.
[15] E. Saligheh and P. Saadatjoo, Impact of building porosity on self-shading and absorbed solar heat reduction in hot and humid regions, Naqshejahan- Basic studies and New Technologies of Architecture and Planning, Vol. 9, No. 4, pp. 257-271, 2020. (in Persian). Retrieved from http://bsnt.modares.ac.ir/article-2-35547-fa.html
[16] W. Pressenlehner and A. Mahdavi, Building morphology, transparance, and energy performance, Eighth International IBPSA Conference, Eindhoven, Netherlands, 2003.
[17] A. Zhang, R. Bokel, A. Van den Dobbelsteen, A. Sun, Q. Huang, and Q. Zhang, The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of china, Sustainability, Vol. 9, No. 10, 2017. doi:10.3390/su9101708
[18] T.Van Druenen, T. Van Hooff, H. Montazeri, and B. Blocken, CFD evaluation of building geometry modifications to reduce pedestrian-level wind speed, Building and Environment, Vol. 163, p.106293,2019. doi:https://doi.org/10.1016/j.buildenv.2019.106293
[19] P. Saadatjoo, M. Mahdavinejad, S. Najaf Khosravi, and N. kaveh, Effect of courtyard proportion on natural ventilation efficiency, International Journal of Advances in Mechanical and Civil Engineering, Vol. 3, No. 5, pp. 92-92, 2016.
[20] Y. Uematsu and N. Isyumov, Wind pressures acting on low-rise buildings, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 82, No. 1, pp. 1-25, 1999. doi: https://doi.org/10.1016/S0167-6105(99)00036-7
[21] A.A. Aliabadi, E. Scott Krayenhoff, N. Nazarian, L.W. Chew, P.R. Armstrong, A. Afshari, & L.K. Norford, Effects of roof-edge roughness on air temperature and pollutant concentration in urban canyons, Boundary-Layer Meteorology Journal, Vol. 164, pp. 249-279, 2017.
[22] S. Najaf Khosravi, P. Saadatjoo, M. Mahdavinejad, S. Amindeldar, The effect of roof details on natural ventilation efficiency in isolated single buildings, Proceedings of PLEA2016: Cities, Buildings, People: Towards Regenerative Environments, Los Angeles, USA, 2016.  
[23] L. Tsichritzis and M. Nikolopoulou, The effect of building height and façade area ratio on pedestrian wind comfort of London, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 191, pp. 63-75, 2019.
[24] Y. Tamura, X. Xu, and Q. Yang, Characteristics of pedestrian-level Mean wind speed around square buildings: Effects of height, width, size and approaching flow profile, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 192, pp. 74-87, 2019.
[25] Y. Du, C.M. Mak, and B.S. Tang, Effects of building height and porosity on pedestrian level wind comfort in a high-density urban built environment, Building Simulation, Vol. 11, No. 6, pp. 1215-1228, 2018.
[26] C. Yuan and E. Ng, Building porosity for better urban ventilation in high-density cities: A computational parametric study, Building and Environment, Vol. 50, pp. 179-189, 2012.
[27] C.W. Tsang, K.C.S. Kwok, and P.A. Hitchcock, Wind tunnel study of pedestrian level wind environment around tall buildings: Effects of building dimensions, separation and podium, Building and Environment, Vol. 49, pp. 167-181, 2012.
[28] M.T. Rezaiee Hariri, S. Najaf Khosravi, and P. Saadatjoo, The Impact of High-rise Building Form on Climatic Comfort at the Pedestrian Level. Journal of Architecture and Urban Planning, Vol. 9, No. 17, pp. 61-77, 2016.
[29] T. Hirano, K. Shinsuke, M. Shuzo, I. ToshiharuIkagac, S. Yasuyuki,  A study on a porous residential building model in hot and humid regions: Part 1.the natural ventilation performance and the cooling load reduction effect of the building model, Building and Environment, Vol. 41, pp. 21-32, 2006.
[30] P. Saadatjoo, M. Mahdavinejad, and G. Zhang, A Study on Terraced Apartments and Their Natural Ventilation Performance in Hot and Humid Regions, Building Simulation, Vol. 11, No. 2, 2018.
[32] P. Saadatjoo, M. Mahdavinejad, G. Zhang, and K. Vali, Influence of permeability ratio on wind-driven ventilation and cooling load of mid-rise buildings, Sustainable Cities and Society, Vol. 70, p. 102894, 2021.
[31] P. Saadatjoo, M. Mahdavinejad, A. Zarkesh, Porosity rendering in high-performance architecture: wind-driven natural ventilation and porosity distribution patterns, Armanshahr Architecture & Urban Development, Vol. 12, No. 26, pp. 73-88, 2019.
[33] A. Dhalluin and E. Bozonnet, Urban heat islands and sensitive building design – A study in some French cities’ context. Sustainable Cities and Society, Vol. 19, pp. 292-299, 2015.
[34] H. Montazeri, B. Blocken, and J.L.M. Hensen, Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis, Building and Environment, Vol. 83, pp. 129-141, 2015.
[35] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. Shrasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, No. 10-11, pp. 1749-1761, 2008.
[36] N. Najimi, Urban planning and architecture regulations and development plans approved by the Supreme Council of Urban Planning and Architecture of Iran and applicable urban planning and architecture laws and regulations. Tosee Iran. 2012.
[37]  M. Razjouyan, Wind and Comfort: Design with Climate. Second Edition, Tehran: Shahid Beheshti University, 2001.
[38] X. Zhang, K.T.Tse, A.U.Weerasuriya, S.W. Li, K.C.S.Kwok, C. MingMak, J. Niud, and Z. Lin, Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications, Building and Environment, Vol. 124, pp. 245-257, 2017.
[39] K.T. Tse, X. Zhang, A.U. Weerasuriya, S.W. Li, K.C.S. Kwok, C. MingMak, J. Niu, Adopting ‘lift-up’ building design to improve the surrounding pedestrian-level wind environment. Building and Environment, Vol. 117, pp. 154-165, 2017.