نگاهی نو به کاربرد انرژی های تجدیدپذیر در صنایع کشاورزی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار، مهندسی شیمی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

امروزه به‌دلیل افزایش جمعیت و بزرگ‌تر شدن اقتصاد بیشتر کشورها، نیاز به مصرف انرژی در بخش صنعت و کشاورزی بیشتر شده است. تامین این مقدار انرژی از منابع فسیلی در چند دهه اخیر مشکلات آلودگی‌های زیست‌محیطی و تغییرات آب و هوایی را به دنبال داشته و هزینه بسیاری را به کشورهای مختلف تحمیل کرده است. لذا در چند دهه اخیر بسیاری از کشورها به دنبال تأمین انرژی از منابع انرژی تجدیدپذیر بوده‌اند. به‌دلیل اهمیت بخش کشاورزی در تأمین امنیت غذایی کشورها و همچنین نقش آن در افزایش صادرات غیرنفتی کشورهای نفت‌خیز، لزوم گسترش این بخش بیش ‌از پیش احساس می‌شود؛ توجه ویژه به تأمین انرژی پایدار، پاک و نامحدود در این حوزه حائز اهمیت می‌باشد. هدف از این پژوهش، مطالعه و شناخت انواع فناوری‌های مرتبط با صنایع کشاورزی است که منبع تأمین انرژی در آن‌ها از طریق منابع انرژی‌های تجدیدپذیر می‌باشد. نتایج پژوهش نشان داد که با بهره‌گیری از منابع متنوع انرژی‌های تجدیدپذیر می‌توان از دستگاه‌هایی نظیر آب‌شیرین‌کن خورشیدی، خشک‌کن خورشیدی، ربات بذرکار خورشیدی، تلمبه بادی تأمین آب، نیروگاه بادی، سوخت جامد زیستی، سامانه‌های تولید بیوگاز و بیودیزل، سیستم‌های گرمایش گلخانه با منابع آب زمین‌گرمایی و پمپ حرارتی زمین‌گرمایی بهره جست. نتیجه استفاده از این سیستم‌ها، کاهش قابل‌توجه در مصرف انرژی‌های فسیلی، کاهش آلاینده‌های هوا، رشد و توسعه شغل‌های وابسته به آن و نیز تأمین امنیت انرژی و کاهش هزینه‌های اجتماعی ناشی از مصرف سوخت‌های فسیلی می‌باشد. این نتایج می‌تواند در طراحی و مدیریت سیستم‌های مختلف انرژی در صنایع کشاورزی مورد استفاده فراوان قرار بگیرد.

کلیدواژه‌ها


[1] F. Islam, M. Shahbaz, A.U. Ahmed, and M.M. Alam, Financial development and energy consumption nexus in Malaysia: A multivariate time series analysis, Economic Modelling, Vol. 30, pp. 435-441, 2013.
[2] M.M. Hossein-Zadeh, and R. Afshari, Biogas Renewable Energy, Journal of Geological Education Development, No. 57, 2009. (in Persian)
[3] S.A. Azizi, M. Mahdiluyi, and F. Hasani, Investigation of New Technologies and Reduction of Pollutants from Motor Vehicles, the First National Conference on Air Pollution, Monitoring, Effects and Control Measures in Iran, Iran, 2013. (in Persian)
[4] Y. Bakhshudeh-Nia, A. Babapoor, and M. Bakhshudeh-Nia, A review of numerical modeling and analysis of the use of phase change materials in buildings to reduce energy consumption, the fifth specialized scientific conference on renewable and clean energy, Tehran, Iran, 2015. (in Persian)
[5] R. Khosh-Akhlagh, A.M. Sharifi, and M. Koochak-Zadeh, Economic Evaluation of Solar Energy Use in Comparison with Diesel Power Plant, Iranian Journal of Economic Research, Vol. 7, No. 24, pp. 171-192, 2005. (in Persian)
[6] K. Soheyli, The effect of improving production technology in the agricultural sector on long-term energy demand in this sector by using the technical-economic model MEDEE-S, Agricultural Economics and Development, Vol. 15, No. 60, pp. 45-69, 2007. (in Persian)
[7] M. Saghafi, Renewable energies, Fourth Edition, pp. 455-460, Tehran: University of Tehran, 2015. (in Persian)
[8] M. Bahrami, and P. Abbaszadeh, An overview of renewable energies in Iran. Renewable and Sustainable Energy Reviews, Vol. 24, pp.198–208. 2013.
[9] N. Mansoori, M. Vaezi, N. Darvish, E. Ghannadi, and R. Tabatabaee, Statistical correlation of CO and PM10 concentrations with wind speed in a five-year period in Tehran, Journal of Natural Environmental, Iranian Journal of Natural Resources, Vol. 64, No. 4, pp. 443-455, 2012. (in Persian)
[10] R. Khosh-Akhlagh, and M. Hassan-Shahi, Estimation of Damages to Shiraz Residents Due to Air Pollution, Journal of Economic Research, No. 61, pp. 53-75, 2002. (in Persian)
[11] A. Haghighi, and A. Babapoor, Using of renewables energies such as effective way to reduce environmental pollution, Journal of Renewable and New Energy, Vol. 5, No. 1, pp. 40-50, 2018. (in Persian)
[12] S. K. Nateghi, and H. Yousefi, The economic review of desalination technologies using renewable energies,  Journal of Renewable and New Energy, Vol. 7, No. 1, pp. 35-42, 2020. (in Persian)
[13] B. Burger, power generation from renewable energy in Germany-assessment of 2015, fraunhofer institute for Solar Energy System ISE, Fraunhofer, pp. 3-17, 2016.
[14] K. Sampathkumar, T.V. Arjunan, P. Pitchandi, and P. Senthilkumar, Active solar distillation-A detailed review, Renewable Sustainable Energy, Vol. 14, No. 6, pp. 1503-1526, 2010.
[15] F. Francisco, J. Leijon, C. Bostrom, J. Engstrom, and J. Sundberg, Wave power as solution for off-grid water desalination systems: Resource characterization for Kilifi-Kenya, Energies, Vol. 11, No. 4, 2018.
[16] B. Sami, M. Zarghami, R. Yegani, and M. Sabahi, Designing Solar Desalination System by Using Reverse Osmosis-Photovoltaic Method (Brackish Water of Sarband Village, Ardabil), Journal of Water and Wastewater Science and Engineering (JWWSE), Vol. 4, No. 2, PP. 37-46, 2019. (in Persian)
[17] J. Lindblom, and B. Nordell, Underground condensation of humid air for drinking water production and subsurface irrigation, Desalination, Vol. 203, pp. 417 434, 2007.
[18] M. T. Qarehkhani, Experimental study of performance of a prototype natural convection solar dryer, Journal of Renewable and New Energy, Vol. 4, No. 2, pp. 67-75, 2018. (in Persian)
[19] P.G. smith, Applications of Fluidization to Food Processing, First Edition, pp. 230-232, New York: Wiley, 2007.
[20] T. Koyuncu, performance of various design of solar air heaters for crop drying applications, Renewable Energy, Vol. 31, No. 7, pp. 1073-1088, 2006.  
[21] H. Abbasi, and H. Shafiee-Ghanavati, A comprehensive review on different kinds of solar dryers and their performance, Journal of Renewable and New Energy, Vol. 6, No. 1, pp. 47-55, 2019. (in Persian)
[22] V. Belessiotis, and E. Delyannis, Solar drying, Solar Energy, Vol. 85, No. 8, pp. 1665-1661, 2011.
[23] A.K. Babu, G. Kumaresan, V.A.A. Raj, and R. Velraj, Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models, Renewable and Sustainable Energy Reviews, Vol. 90, pp.536-556, 2018.
[24] M.A. Leon, S. Kumar, and S.C. Bhattachaya, A comprehensive procedure for performance evaluation of solar dryers, Renewable & Sustainable Energy Reviews, Vol. 6, No. 4, pp. 367-393, 2002.
[25] S. Soodmand-Moghaddam, and M. Sharifi, Evaluation of a dryer equipped with solar preheating system to study fossil fuel consumption, Fourth National Conference on Climate Change and its impact on agriculture and the environment, Urmia, Iran, 2019. (in Persian)
[26] L .Zhang, and Y. Yang, Analysis of Thermal insulation performance of Aerated Concrete Block Wall in Solar Greenhouse (in Russian), IOP Conference Series: Earth and Environmental Science, Vol. 170, 2018.
[27] M. Bahari, B. Najafi, and A. Babapoor, Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer, Journal of Energy Storage, Vol. 28, 2020.
[28] M. Masoodi-Reyhan, and A. Babapoor, A review on phase change materials as a valuable energy source, Fifth Conference on Renewable, Clean and Efficient Energy, Tehran, Iran, 2015. (in Persian)
[29] A. Babapoor, G. Karimi, Thermal properties measurement and heat storage analysis of paraffin-nanoparticles composites phase change material: comparison and optimization, Applied Thermal Engineering, Vol. 90, pp. 945-951, 2015.
[30] A. Babapoor, M.M. Azizi, and G. Karimi, Thermal management of a Li-ion battery using carbon fiber- phase change material composites, Applied Thermal Engineering, Vol. 82, pp. 281–290, 2015.
[31] F. Samimi, A. Babapoor, M. Azizi, and G. Karimi, Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers, Energy, Vol. 96, pp. 355-371, 2016.
[32] A. Babapoor, G. Karimi, and M. Khorram, Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning, Applied Thermal Engineering, Vol. 99, pp. 1225-1235, 2016.
[33] A. Babapoor, G. Karimi, and S. Sabbaghi, Thermal characteristic of nanocomposite phase change materials during solidification process, Journal of Energy Storage, Vol. 7, pp. 74-81, 2016.
[34] G. Karimi, M.M. Azizi, and A. Babapoor, Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites, Journal of Energy Storage, Vol. 8, pp. 168–174, 2016.
[35] A. Babapoor, G. Karimi, S.I. Golestaneh, and M. Ahmadi Mezjin, Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization, Applied Thermal Engineering, Vol. 118, pp. 398-407, 2017.
[36] A. Babapoor, R. Pishkar-Azari, S. E. Gholestaneh, and Z. Ghazi-Tabatabayi, Simulation of thermal management of phase change nanocomposite materials by CFD technology, Iranian Journal of Chemistry and Chemical Engineering, Vol. 37, No. 4, pp. 195-210, 2019. (in Persian)
[37] A. Babapoor, Z. Dehghan, M. Ganjkhani, and M. Paar, An Insight into the Energy Optimization in New Generation Clothes Using Phase Change Materials, Journal of Renewable and New Energy, Vol. 8, No. 1, pp. 70-77, 2021. (in Persian)
[38] M. Condori, R. Echazu , and L. Saravia, Solar drying of sweet pepper and garlic using the tunnel greenhouse dryer, Renewable Energy, Vol. 22, No. 4, pp. 447-460, 2001.
[39] M. Condori, and L. Saravia, The performance of forced convection greenhouse dryers, Renewable Energy, Vol. 13, No. 4, pp. 453-469, 1998.
[40] A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM, Tunisia, Journal of Cleaner Production, Vol. 168, pp. 37-48, 2017.
[41] B. Bena, and R.J. Fuller, Natural convection solar dryer with biomass back-up heater, Solar Energy, Vol. 72, No. 1, pp. 75-83, 2002.
[42] S. M. Javidan, and D. Mohammad-Zamani, Design and construction of solar seeding robot equipped with row detection technology, 11th National Congress of Mechanical Bio systems Engineering and Mechanization, Hamadan, Iran, 2018. (in Persian)
 [43] M. K. Abdulrahman, Seed Sowing Robot, International Journal of Computer Science Trends and Technology (IJCST), Vol. 5, No. 2, 2017.
[44] Y.M. Anil Meravade, Design and Development of Advanced Multi-Tasking Android Based Agrobot. International Journal of Advanced Research in Science, Engineering and Technology, Vol. 4, No. 6, pp. 40-81, 2017.     
[45] A. Gandmakar, and F. Kiarsi, Wind potential energy evaluation in Iran, 21st International Electricity Conference, Tehran, Iran, 2006. (in Persian)
[46] D. D. Lera, G.G. Merino, B. J. Pavez, and J.A. Tapia, Efficiency assessment of a Wind Pumping System. Energy Conversion and Management, Vol. 52, pp. 795-803, 2011.
[47] C. Gopal, M. Mohanraj, P. Chandramohan, and P. Chandrasekar, Renewable energy Source Water Pumping systems_A Literature review, Renewable and Sustainable Energy Reviews, Vol. 25, pp. 351-370, 2013.
[48] Z. Suleimaniand, and N. Rao. Wind-powered electric water-pumping system installed in a remote location, Applied Energy, Vol. 65, pp. 339-347, 2000.
[49] C.L. Chen, H.C. Chen, and J.Y. Lee, Application of a generic superstructure based formulation to the design of wind-pumped-storage hybrid systems on remote islands, Energy Conversion and Management, Vol. 111, pp. 339-351, 2016.
[50] M. Khani, and A. Aziz-Panah, Calculation of the number of wind turbines required to supply drinking water to nomadic livestock in Ilam province, 10th National Congress of Agricultural Machinery Engineering (Biosystems) and Mechanization of Iran, Ferdowsi University of Mashhad, Mashhad, Iran, 2016. (in Persian)
[51] B. Azarm, National Strategies for Construction of Wind Power Plants in Iran, Journal of Science and Engineering Elites, Vol. 1, No. 2, pp. 237-242, 2017. (in Persian)
[52] I. Graham, Wind Power (Energy Forever), pp. 1-48, Austin: Raintree Steck-Vaughn, 1999.
[53] E. Taghizadeh, M. Rasti, A. Gholam-Veloujerdi, and M. Omidi, The feasibility of installing wind turbines in the city of Torbat Heydarieh for Rural Development, Rural Development Strategies, Vol. 4, No. 2, pp. 233-265, 2017. (in Persian)
[54] W. Cai, C. Wong, J. Chen, and S.Q. Wang, Green economy and green jobs: myth or reality? The case of China’s Power generation sectors, Energy, Vol. 36, No. 10, pp. 5994-6003, 2011.
[55] E. Sarlaki, and S. R. Hassan-Beygi, Production Potentials and Technical Barriers Facing the Development and Utilization of Renewable Energies in Iran, Journal of Renewable and New Energy, Vol. 6, No. 1, pp. 14-25, 2019. (in Persian)
[56] S. Isazadeh, and J. Mehranfar, Investigating the Relationship between Energy Consumption and Urbanization Level in Iran (Application of Vector Correction and Error Pattern and Factor Decomposition Method), Journal of Economic Strategy, Vol. 1, No. 2, pp. 47-70, 2012. (in Persian)
[57] S. Sensoz, D. Angin, and S. Yorgun, Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil, Biomass Bioenergy, Vol. 19, pp. 271-279, 2000.
[58] K. Dowaki, T. Ohta, Y. Kasahara, M. Kameyama, K. Sakawaki, and S. Mori, An economic and energy analysis on bio-hydrogen fuel using a gasification process, Renewable Energy, Vol. 32, pp. 80-94, 2007.
[59] A. Abyaz, E. Afra, and N. Shah Haidar, Energy production processes from solid biofuels from lignocelluloses’ sources, National Conference on Knowledge and Innovation in Wood and Paper Industry with Environmental Approach, University of Tehran, Tehran, Iran, 2017. (in Persian)
[60] A. Abyaz, E. Afra, N. Shahheydar, and N. Mohammadi, Renewable energy, Sustainable Source as Replacement fuel for Natural Resources Preservation, Journal of Renewable and New Energy, Vol. 5, No. 2, pp. 84-89, 2019. (in Persian)
[61] F. Cherubini, The bio refinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Conversion and Management, Vol. 51, pp. 1412-1421, 2010.
[62] A. Abyaz, Z. Najafi, and E. Afra, Evaluation of Biofuel Production Infrastructures of Sugarcane Bagasse in Iran, The First National Conference on Wood and Lignocellulosic Products, Gonbad Kavous University, Gonbad Kavous, Iran, 2015. (in Persian)
[63] G. Najafi, B. Ghobadian, T. Tavakoli, and  T. Yusaf, Potential of bioethanol production from agricultural wastes in Iran, Renewable and Sustainable Energy, Vol. 13, pp. 1418-1427, 2009.
[64] H. Shahini, M. Saadatfar, and M. Taki, Analysis and study of biogas use in poultry breeding halls, 3rd National Congress on Development and Promotion of Agricultural Engineering and Soil Sciences of Iran, Association for Development and Promotion of Basic Sciences and Technologies, Tehran, Iran, 2017. (in Persian)
[65] M. Safari, and R. Abdi, Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure, Journal of Agricultural Machinery, Vol. 6, No. 2, pp. 476-487, 2016. (in Persian)
[66] A. Shaikh-ahmadi, and M. Zargar-zade, Using of renewable energy to product electricalenergy, Master science thesis, technical college, electrical department, Islamic Azad University Tehran South branch, Tehran, Iran, 2007.(in Persian)
[67] B. Boughlan-dashti, J. Mohammadnejad, and A. Shabanikia, Assessing the potential of energy production from agricultural waste in Iran, The first Congress of bioenergy, Eslamshahr, Iran, 2010. (in Persian)
[68] A. Demirbas, Biodiesel-A Realistic Fuel Alternative for Diesel Engines, First Edition, pp. 89-152,London: Springer,2008.
[69] L.C. Meher, D. Vidya Sagar, and S.N. Naik, Technical aspects of biodiesel production by transesterification-a review, Renew Sustain Energy Review, Vol. 10, pp. 248-268, 2006.
[70] G. Knothe, C.A. Sharp, and T.W. Ryan, Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels, Vol. 20, pp. 403-408, 2006.
[71] Y. Zhang, M.A. Dub, D.D. McLean, and M. Kates, Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis, Bioresource technology, Vol. 90, pp. 229-240, 2003.
[72] M. Mittelbach, and C. Remschmidt, Biodiesels-The Comprehensive Handbook, First Edition, pp. 102-103, Graz: Martin Mittelbach, 2004.
[73] V.A. Fry, Lessons from London: regulation of open-loop ground source heat pumps in central London, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 42, pp. 325-334, 2009.
[74] R. Nag, A Review on geothermal energy technology, Accessed 30 April 2016; https://doi.org/10.6084/m9.figshare.3206485.v1.
[75] H. Mojaddam, and H. Yousefi, A review of the application of geothermal energy in the greenhouse heating and cooling section, Journal of Renewable and New Energy, Vol. 7, No. 1, pp. 125-132, 2020. (in Persian)
[76] B. Nughani, Renewable energy sources, First Edition, pp. 95-103, Cairo: ASMT, 2014.
[77] C. Skelton, Geothermal energy could meet half of B.C.`s electricity needs, researcher says, Accessed 24 December 2007; http://www.sfu.ca/phys/346/131/Geothermal_energy.
[78] T. Boyd, Geothermal greenhouse information package, First Edition, pp. 33-52, 2008.
[79] M. Van Nguyen, S. Arason, M. Gissurarson, and P. G. Palsson, Uses of Geothermal Energy in Food and Agriculture, First Edition, pp. 27-41, Rome: Food and Agriculture Organization of the united nations, 2015.
[80] A. Saffarzadeh, S. Porkhial, and M. Taghaddosi, Geothermal Energy Developments in Iran, World geothermal congress, Bali, Indonesia, 2010.
[81] A. Mojtahedi-Saffari, F. Atabi, and A. Atai, Design and analysis of using a geothermal heat pump system for an educational / office building, Journal of Chiller and Cooling Tower, Vol. 6, No. 32, pp. 26-33, 2016. (in Persian)
[82] K. Charoenvisal, Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks 1 and 2 Building Blacksburg, Virginia, Virginia Polytechnic Institute and State University, Virginia, USA, 2008.
[83] S. Kavanaugh, and K. Rafferty, Geothermal Heating and Cooling Design of Ground Source Heat Pump Systems, First Edition, pp. 300-400,Atlanta: ASHRAE, 2014.
[84] M. Zoghi, and K. Javaherdeh, Parametric Analysis and Optimization of a Ground Source Heat Pump with Economizer, Journal of Mechanics of Structures and Fluids, Vol. 6, No. 1, pp. 215-224, 2016. (in Persian)
 [85] R. Curtis, J. Lund, B. Sanner, L. Rybach, and G. Hellstrom, Ground source heat pumps–geothermal energy for anyone, anywhere: current worldwide activity, In Proceedings World Geothermal Congress, Antalya, Turkey, 2005.
[86] S. Sanaye, and B. Niroomand, Thermal-economic modeling and optimization of vertical ground-coupled heat pump, Energy Convers Manage, Vol. 50, pp. 1136-1147, 2009.
[87] A.S.H.R.A.E, Commercial / Institution ground source heat pump engineering manual, First Edition, Atlanta: ASHRAE, 1995.
[88] H. Alem, M. Fallahi, and S. Nahas-Farmanieh, Site selection of closed loop geothermal pumps with geographic information system on the whole scale of Iran, Journal of Renewable and New Energy, Vol. 4, No. 1, pp. 52-61, 2017. (in Persian)
[89] R. Curtis, Earth Energy in the UK. Geo-Heat Center Bulletin, Vol. 22, 2001.
[90] L. Lubis, M. Kanglu, I. Dincer, and M. Rosen, Thermodynamic analysis of a hybrid geothermal heat pump system, Geothermics, Vol. 40, pp. 223-228, 2011.
[91] Z.M. Amin, and M.N.A. Hawlader, A review on solar assisted heat pump in Singapore, Renewable Sustainable Energy Review, Vol. 26, pp. 286-293, 2013.
[92] D. Banks, An introduction to ‘thermogeology’ and the Exploitation of ground source heat, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 42, pp. 283-293, 2009.