مروری بر روش‌های مدرن تولید و ذخیره‌سازی هیدروژن و استفاده از آن به عنوان منبع انرژی پایدار

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی کارشناسی مهندسی انرژی، دانشگاه صنعتی قوچان، قوچان، ایران

2 استادیار، گروه مهندسی شیمی و انرژی، دانشگاه صنعتی قوچان، قوچان، ایران

چکیده

با افزایش سطح رفاه و توسعه‏ ی اقتصادی جوامع، تامین انرژی پایدار به عنوان موتور محرک رشد به یکی از چالش‏ های اساسی بشر تبدیل شده است. در دهه‏ های اخیر مصرف بی رویه سوخت‏ های فسیلی نگرانی ‏هایی را در مورد امنیت انرژی و تغییرات آب و هوایی ایجاد کرده ‏است. از این رو استفاده از منابع انرژی تجدیدپذیر و پایدار در اولویت قرار گرفته ‏است. یکی از منابع انرژی تجدیدپذیر که از راندمان تبدیل بالایی برخوردار است فناوری هیدروژن و پیل سوختی می باشد. تولید انرژی الکتریکی از سایر منابع تجدیدپذیر نظیر باد، خورشید، برق ‏آبی و زمین‏ گرمایی به دلیل وابستگی به شرایط محیطی و اقلیمی دارای محدودیت‏ های متعددی هستند. در میان گزینه ‏های سبز معرفی شده، هیدروژن به دلیل فراوانی و تنوع منابع تولید، به گزینه ای منطبق بر مولفه ‏های توسعه پایدار برای تولید و ذخیره انرژی تبدیل شده است. هیدروژن به دلیل بهره ‏وری انرژی بالقوه بالا و تولید آلاینده های کم، یک حامل انرژی جذاب برای تولید انرژی الکتریکی و کاربردهای حمل و نقل محسوب می‏شود. در حال حاضر بخش اعظم (بیش از 90 درصد) هیدروژن موردنیاز از منابع هیدروکربنی تولید می شود. تقاضای جهانی برای مصرف هیدروژن در حدود 70 میلیون تن می باشد که بیش از 93 درصد آن صرف پالایش سوخت‏ های فسیلی و تولید مواد شیمیایی می‏ شود. در این پژوهش به بررسی فرایندهای مطرح در حوزه ‏ی تولید و ذخیره‏ سازی هیدروژن پرداخته شده‎است.

کلیدواژه‌ها


[1] H. Caliskam, I. Dincer, A. Hepbasli, Energy exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study, Applied Thermal Engineering, Vol. 61, No. 2,  pp. 784-798, 2013.
[2] M. E. Demir, I. Dincer, Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production, International Journal of Hydrogen Energy, Vol.42, No. 53, pp. 30044-30056, 2017.
[3] T. Özgür, A. C. Yakaryilmaz, Thermodynamic analysis of a proton Exchange Membrane fuel cell, International Journal of Hydrogen Energy, Vol. 43, No. 38, pp. 18007-18013, 2018.
[4] M. Eroglu, E. Dursun, S. Sevencan, J. Song, S. Yazici, O. Kilic, A mobile renewable house using pv/wind/fuel cell hybrid power system, International Journal of Hydrogen Energy, Vol. 36, No. 13, pp. 7985-7992, 2011.
[5] International Energy Agency, Accessed 31 July 2020; https://www.iea.org/data-and-statistics?country=WORLD&fuel=Oil&indicator=OilProd
[6] M. Anwar, S. Lou, L. Chen, H. Li,  Z. Hu, Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae, Bioresource Technology, Vol. 292, pp. 121972, 2019
[7] S.Z. Baykara, E.H. Figen, A. Kale, T. Nejat Veziroglu, Hydrogen from hydrogen sulphide in Black Sea, International Journal of Hydrogen Energy, Vol. 32, No. 9,  pp. 1246-1250,2007.
[8] D. B. Levin, R. Chahine, Challenges for renewable hydrogen production from biomass, International Journal of Hydrogen Energy, Vol. 35, No. 10,  pp. 4962-4969, 2010.     
[9] R. Ramachandran, R. K. Menon, An overview of industrial uses of hydrogen, International Journal of Hydrogen Energy, Vol. 23, No. 7,  pp. 593-598, 1998.
[10] Hydrogen applications, Accessed 31 July 2020; https://www.hydrogeneurope.eu
[11] Z. B. Sema, Hydrogen: A brief overview on it's sources, production and environmental impact, International Journal of Hydrogen Energy, Vol.43, No. 23, pp. 10605-10614, 2018.
[12] A. M. Amin, E. Croiset, W. Epling, Review of methane catalytic cracking for hydrogen production, International Journal of Hydrogen Energy, Vol. 36, No. 4,  pp.  2904-2935, 2011.
[13] Y.Jamal, M. L.Wyszynski, On-Board generation of hydrogen-richi gaseous fuels-a review,  International Journal of Hydrogen Energy, Vol.19, No. 7,  pp. 557-572, 1994.
[14] H. A. Abbas, W. M. A. Wand Daud, Hydrogen production by methane decomposition: A review, International Journal of Hydrogen Energy, Vol. 35, No. 3, pp.1160-1190, 2010.
[15] A. M. Amin, E. Croiset, W. Epling, Review of methane catalytic cracking for hydrogen production, International Journal of Hydrogen Energy, Vol. 36, No. 4,  pp. 2904-2935, 2011.
[16] K. Damen, M. V. Troost, A. Faaij, W. Turkenburg, A comparision of electricity and hydrogen production systems with Co2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, Progress in Energy and Combustion Science, Vol. 32, No. 2,  pp. 215-246, 2006.
[17] K. Zeng, D. Gauthier, J. Soria, G. Mazza, G. Flamant, Solar pyrolysis of carbonaceous feedstocks: A review, Solar Energy, Vol. 156, pp.73-92, 2017.
[18] G. Nahar, D. Mote, V. Dupont, Hydrogen production from reforming of biogas: Review advances and an indian perspective, Renewable and Sustainable Energy Reviews, Vol. 76, pp. 1032-1052, 2017.
[19] N. Ibrahim, S. K. kamarudin, L. J. Minggu, Biofuel from biomass via photo-electrochemical reactions: An overview, Journal of Power Sources, Vol. 259, pp. 33-42, 2014.
[20] M. M. Rashid, M. K. Al Mesfer, Hamid. Naseem, M. Danish, Hydrogen Production by Water Electrolysis: A Review Of Alkaline WaterElectrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis, International Journal of Engineering and Advanced Technology, Vol. 4, No. 3, 2015.
[21] M. Wang, Zh. Wang, X. Gong, Zh. Guo, The intensification technologies to water electrolysis for hydrogen production-A review,Renewable and Sustainable Energy Reviews, Vol. 29,pp. 573-588, 2014.
[22] K. Zhang, W. Bao, L. Chang, H. Wang, A review of recent researches on Busen reaction for hydrogen production via S-I water and H2S  splitting cycles, Journal of Energy Chemistry, Vol. 33, pp. 46-58, 2019.
[23] A. Ozawa, Y. Kudoh, K. N, Kitagawa. R. Muramatsu, Life cycle CO2 emissions from power generation using hydrogen energy carriers, International Journal of Hydrogen Energy, Vol. 44, No. 21, pp.11219-11232, 2019.
[24] J. Töpler, J. Lehmann, Hydrogen and Fuel Cell Technologies and Market Perspectives, Springer, Berlin, Heidelberg, Book Chapter 11, pp. 187-207, 2016.
[25] A. M. Abdalla, Sh. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, A. K. Azad, Hydrogen Production, Storage, Transportation and key challenges with applications: A review, Energy Conversion and Management, Vol. 165, pp. 602-627, 2018.
[26] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in energy and combstion seience, Vol. 36, No. 3, pp. 307-326, 2010.
[27] M. Fereidooni, A. Mostafaeipour, V. Kalantar, H. Goudarzi, A Comprehensive evaluation of hydrogen production from photovoltaic power station, Renewable and Sustainable Energy Reviews, Vol. 82, pp. 415-423, 2018.
[28] F. Maleki, A. Farzaneh, An overview of some methods of hydrogen production and introduction of fuel cells and reviewing the advantages and disadvantages of fuel cells, Third National Conference on Technology Development in Mechanical and Aerospace Engineering ,Tehran, Iran, 2020. ( in Persian)
[29] A. Khosrouvani, R. Zeynali, K. GhasemZadeh, Hydrogen production using new solar membrane reactor technology, National iranian Oil Refinery and Distribution, Tehran, Iran,Vol 11, No. 3,  pp. 50-68, 2015. (in persian)
[30] K. Liu, Ch. Song, V. Subramani, Hydrogen and Syngas Production and Purification Technologies, WILEY, 2010.
[31]  B. Sørensen and G. Spazzafumo, Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier Science, 2018.
[32] T. Younus, A. Anwer, Z. Asim, M. S. Surahio, Production of Hydrogen by Steam Methane Reformation Process, Third International Conference on Advances on Clean Energy Research (ICACER), Vol. 51, No. 5, 2018.
[33] International Energy Agency, Hydrogen and Fuel Celles Review of National R&Dprograms, Accessed 31 July 2020; https://www.iea.org/fuels-and-technologies/hydrogen
[34] A. G. De Crisci, A. moniri, Y. Xu, Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy, International Journal of Hydrogen Energy, Vol. 44, No. 3, pp. 1299-1327, 2019.
[35] M. Dan, Sh. Yu, Y. Li, Sh. Wei, J. Xiang, Y. Zhou, Hydrogen sulfide Decomposition: How to capture Hydrogen and Sulfur by photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol 42, 2019.
[36] Zh. Ma, S. Zhang, D. Xie, Y. Yan, A novel integrated process for hydrogen production from biomass, International Journal of Hydrogen Energy, Vol 39, No. 3, pp. 1274-1279, 2014.
[37] M. Ni, D. Y. C. Leung, M. K. H. Leung, K. Sumathy, An overview of hydrogen production from biomass, Fuel Processing Technology, Vol 87, No. 5,  pp. 461-472, 2006.
[38] A. Abuadala, I. Dincer, G. F. Naterer, Exergy analysis of hydrogen production from biomass gasification, International Journal of Hydrogen Energy, Vol. 35,  No. 10, pp. 4981-4990, 2010.
[39] M. Balat, Possible Methods for Hydrogen Production, Energy Sources, Vol. 31, No. 1, pp. 39-50, 2008.
[40] G. Voitic, B. Pichler, A. Basile, A. lulianelli, K. Malli, S. Bock, V. Hacker, Hydrogen production, Fuel Cells and Hydrogen, Chapter 10, pp. 215-241, 2018.
[41] A. Ebrahimi Moghaddam, M. Deymi Dasht Bayyaz, Investigation of hydrogen production methods from various fossil fuel sources, Iranian Journal of Mechanical Engineers,Vol. 27, No. 6, pp. 35-41, Tehran, 2019. (in persian)
[42]   Energy balance sheet of the Ministry of Energy of Iran, 2019. (in persian)
[43] International Energy Agency, Accessed 31 July 2020; https://www.iea.org/fuels-and-technologies/hydrogen
[44] J. Andersson, S. grönkvist, Large-scale storag of hydrogen, International Journal of Hydrogen Energy, Vol. 44, No. 23, pp. 11901-11919, 2019.
[45] N. Rouyayi, R. S. Movakhar, F. Dabier, N. Riyahi Nouri, New technologies for storage and transfer of hydrogen fuel, Sixth National Conference on Nanotechnology in the Electricity Industry, Niroo Researech Insttute, Tehran, 2018.( in persian)
[46] Y. Luo, Q. Wang, J. Li, F. Xu, L. Sun, Y. Zou, H. Chu, K. Zhang, Enhanced Hydrogen Storage/Sensing of metal Hydrides by Nanomodification, Materials Today Nano,  Vol. 9, 2020.
[47] S. Niaz, T. Manzoor, A. H. Pandith, Hydrogen storage: Materials,methods and perspectives, Renewable and Sustainable Energy Reviews, Vol. 50, pp. 457-469,2015.
[48] R. Moradi, K. M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, International Journal of Hydrogen Energy, Vol.44, No. 23, pp.12254-12269, 2019.
[49] M. R. Arasteh, N. Bageri Moghaddam, A. Iran Khah, J. Hashemi, S. Rad pour, Book of  Fuel Cell and Hydrogen Technology: Development Priorities and Strategies in the Country, 2008. (in persian)
[50] R. Hayre, S. Cha, W. G. BColella , F. B. Prinz, Hand Book Fuel cell Fundamentals, Wiley,Chapter8, 2016.
[51] T.Maiyalagah, V. S. Saji, Electrocatalysts for Low Temperature Full Cells: Fundamentals and Recent Trends, Wiley, 2017.
[52] Comparison of Full cell Technologies Available, Accessed 5 October 2020; https://www.energy.gov/eere/fuelcells/comparison-fuel-cell-technologies
[53] Construction of a semi-industrial hydrogen pilot with a capacity of 200 kW and purchase and installation of an electrolysis device of 30 N / cubic meters (150 kW) and equipment for liquefaction system and purchase of ancillary systems for gas analysis, Renewable Energy Organization and Electricity Efficiency (SATBA), Accessed 31 July 2020; http://www.satba.gov.ir
[54] Purchase, installation and commissioning of 25 kW polymer fuel cell connected to the grid, Renewable Energy Organization and Electricity Efficiency (SATBA), Accessed 31 July 2020; http://www.satba.gov.ir
[55] Images of projects of Hydrogen Office, Renewable Energy Organization and Electricity Efficiency (SATBA), Accessed 31 July 2020; http://www.satba.gov.ir
[56] A. Ahmad pour, M. Kalbasi, Investigating the performance of different types of fuel cells in the production of clean energy, International Conference on New Approaches to Energy Conservation (ETEC), 2016. (in persian)
[57] S. Faroukhi Souraki, M. Nimafar, R. Azadi,  book of renewable energy, Tehran, Azarfar, 2019. (in persian)