مروری بر روش‌ها، شرایط، مواد اولیه و تکنولوژی‌های مختلف تولید بیودیزل

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی دکتری انرژی‌های تجدید‌پذیر، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیار گروه مهندسی مکانیک بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

استفاده از منابع انرژی تجدیدپذیر امروزه به دلیل کاهش منابع سوخت­های فسیلی و افزایش آلایندگی­های زیست محیطی دارای اهمیت است. بیودیزل یکی از انواع انرژی­های تجدیدپذیر است. باید تا سال 2020،  20% از سوخت­های مورد استفاده از منابع تجدیدپذیر باشد، که بیودیزل یکی از مهمترین راهکارها برای تکمیل نمودن این انتخاب­ها و رسیدن به هدف می­باشد. بیودیزل به عنوان سوخت زیستی می­تواند در موتورهای دیزل در ترکیب با دیزل خالص استفاده شود و لذا منجر به بهبود شرایط احتراق و کاهش آلاینده­های انتشاری گردد. بیودیزل طی روش­های مختلف و فرآیندهای مختلف از مواد زیستی مختلف تهیه می­گردد، که این به پتانسیل منطقه مورد نظر و امکان دسترسی به منابع زیستی بستگی دارد. از سویی دیگر تکنولوژی مورد استفاده در تولید بیودیزل نیز دارای اهمیت است. با توجه به اینکه از چه تکنولوژی و مواد زیستی برای تولید بیودیزل استفاده می­شود، هزینه اقتصادی و بازده تولیدی حاصل می­گردد. بنابراین در مقابل افزایش درخواست برای تولید بیودیزل، ارائه روش مناسب برای تجاری سازی فرآیند تولید بیودیزل دارای اهمیت است. در این راستا در این پژوهش روش­های مختلف برای تولید بیودیزل از منابع مختلف بررسی می­گردد، تا روش مناسب برای دستیابی به فرآیند تولید بیودیزل حاصل گردد. براساس نتایج حاصل از این پژوهش تولید بیودیزل وابسته به شرایط و دسترسی به منابع زیستی اولیه دارد، ولی بطور کلی تولید بیودیزل از منابع غیرخوراکی و به همراه کاتالیزور قلیایی در فرآیند ترانس استریفیکاسیون دارای اهمیت تجاری است؛ به طوری که طی این روش بیودیزل با بازده بالا (حدود 98%) تولید می­شود و از لحاظ اقتصادی نیز در مقایسه با روش­های دیگر ارجحیت دارد.

کلیدواژه‌ها


[1]     Hama S, Hideo N and Kondo A. (2018), “How lipase technology contributes to evolution of biodiesel production using multiple feedstocks,” Current Opinion in Biotechnology, 50: 57-64.
[2]     Knothe, G and Dunn, R, O. (2001), “Biofuels derived from vegetable oils and fats,”  in Oleochemical Manufacture and Applications, eds. F D Gunstone and R J Hamilton Sheffield Academic Press, UK, 106–63.
[3]     Knothe G, Krahl J and Van Gerpen J (2005), “The Biodiesel Handbook,”AOCS Press Champaign, Illinois.
[4]     Demirbas A (2009), “Biofuels: securing the planet’s future energy needs,” Springer, Greenenergy and technology, 336, 71.
[5]     Mittelbach M (2009), “Process technologies for biodiesel production,” in Biofuels, eds. W Soetart and E J Vandamme, John Wiley & Sons, UK, 77–93.
[6]     Mittelbach M and Koncar M (1994), “Process of Preparing Fatty Acid Alkyl Esters,” European Patent EP0708813B1.
[7]     Van Hoed V, Zyaykina N, De Greyt W, Maes J and Verhe R (2008), “Identification and occurrence of steryl glucosides in palm and soy biodiesel,”  Journal of the American Oil Chemists’ Society, 85, 701–9.
[8]     Mittelbach M and Remschmidt C (2004), Biodiesel – The Comprehensive Handbook, Karl Franzens University, Graz, Austria.
[9]     Mladenović N D, Kiss F, Škrbić B, Tomić M, Mićić R and Predojević Z. (2017), “Current state of the biodiesel production and the indigenous feedstock potential in Serbia,” Renewable and Sustainable Energy Reviews, 81: 280-291. 
[10]   Diesel R (1912), ‘The diesel oil-engine,” Engineering, 93, 395–406.
[11]   Chavanne C G (1937), “Procede de Transformation d`Huiles Vegetales en Vue de Leur Utilisation comme Carburants,” Belgian Patent 422 887; Chemical Abstract, 32, 4313 (1938).
[12]   Vávra A, Hájeka M, Skopal F. (2018), “Acceleration and simplification of separation by addition of inorganic acid in biodiesel production,”Journal of Cleaner Production, 192: 390-395.
[13]   Bailer J. and De Hueber K (1991), “Determination of saponifiable glycerol in biodiesel,” Fresenius Journal of Analytical Chemistry, 340, 186, Chemical Abstract, 115, 73906 (1991).
[14]   Milke (2009), Global Supply, Demand and Price Outlook of Oils & Fats, 2nd International Congress on Biodiesel, Munich, Germany, 15–17 November.
[15]   Haas M J, McAloon A J, Yee W C and Foglia T A (2006), “A process model to estimate biodiesel production costs,”  Bioresource Technology, 97, 671–678.15
[16]   Gebremariam S N, Marchetti J M. (2018), “Economics of biodiesel production: Review,” Energy Conversion and Management, 168: 74-84.
[17]   Shu Q, Tang G, Lesmana H, Zou L and Xiong D. (2017), “Preparation, characterization and application of a novel solid Brönsted acid catalyst SO42−/La3+/C for biodiesel production via esterification of oleic acid and methanol,” Renewable Energy, 119: 253-261.
[18]   Hosseinzadeh Bandbafha  H, Tabatabaei M, Aghbashloa M, Khanali M, Demirbas A. (2018), “A comprehensive review on the environmental impacts of diesel/biodiesel additives,” Energy Conversion and Management, 174: 579-614.
[19]   O’Brien R, Farr W and Wan P (2000), “Introduction to Fats and Oils Technology,” AOCS Press, Champaign, Illinois, 618.
[20]   Ambata I, Srivastava V and Sillanpää M. )2018(, “Recent advancement in biodiesel production methodologies using various feedstock: A review,” Renewable and Sustainable Energy Reviews. 90: 356-369.
[21]   EeTang Z, Lim S, LingPang Y, ChyuanOng H and TeongLee K. (2018),“Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review,”  Renewable and Sustainable Energy Reviews, 92: 235-253.
[22]   Mittelbach M and Trathnigg B (1990), “Kinetics of alkaline-catalyzed methanolysis of sunflower,” European Journal of Lipid Science and Technology, 92(4), 145–8.
[23]   Gutsche B (1997), “Technology of methyl ester production and its application to biofuels,” Fett Lipid, 99, 418–27.
[24]   Monteiro M R, Kugelmeier C L, SanaiottePinheiro R, OtávioBatalhad M and Silva Césare A. (2018), “Glycerol from biodiesel production: Technological paths for sustainability,” Renewable and Sustainable Energy Reviews, 88: 109-122.
[25]   Haas M J, Scott K M, Foglia T A and Marmer W N (2007), “The general applicability of insitu transesterification for the production of fatty acid esters from a variety of feedstocks,”  Journal of the American Oil Chemists’ Society, 84(10), 963–70.
[26]   Georgogianni K G, Kontominas M G, Pomonis P J, Avlonitis D and Gergis V (2008), “Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel,”  Energy Fuels, 22(3), 2110–15.
[27]   Portnoff M A, Purta D A, Nasta M A, Zhang J and Pourarian F (2006), “Methods for producing biodiesel,” WO/2006/002087.
[28]   Boocock D G, Konar S K, Mao V, Lee C and Buligan S. (1998), “Fast formation of high-Purity methyl esters from vegetable oils,” Journal of the American Oil Chemists Society, 75(9), 1167-72.
[29]   TiwariV A, Rajesh M and Yadav S. (2018), “Biodiesel production in micro-reactors: A review,” Energy for Sustainable Development, 43: 143-161.
[30]   Wyatt V T and Haas M J (2009), “Production of fatty acid methyl esters via the in situ transesterification of soybean oil in carbon dioxide-expanded methanol,” Journal of the American Oil Chemists’ Society, 86, 1009–16.
[31]   Ding H, Ye W, Wang Y, Wang X, Li L, Liu D, Gui J, Song C and Ji N. (2017), “Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids,” Energy, 144: 957-967.
[32]   Breccia A, Esposito B, Fratadocchi G B and Fini A (1999), “Reaction between methanol and commercial seed oils under microwave irradiation,” Journal of Microwave Power Elecromagnetic Energy, 34, 3-8.
[33]   Soragna F (2008), “Alternative routes to process low quality raw materials to produce biodiesel,” Presentation at 3rd Annual Biofuel Meeting, October 28–30, Berlin, Germany.
[34]   Zhang Y, Dube M, McLean D and Kates M (2003), “Biodiesel production from waste cooking oil: 2 Economic assessment and sensitivity analyses,” Bioresource Technology, 90, 229–40.
[35]   Al-Widyan M I and Al-Shyoukh A O (2002). “Experimental evaluation of the transesterification of waste palm oil into biodiesel,” Bioresource Technology, 85(3): 253-6.
[36]   Canacki M and Van Gerpen J (1999), “Biodiesel production via acid catalysis, Trans ASAE, 42(5), 1203-10.
[37]   Nye M, Williamson T, Desphande S, Schrader J, Snively W and Yurkewich T (1983), “Conversion of used frying oil to diesel fuel by transesterification: Preliminary tests,”  Journal of the American Oil Chemists’ Society, 60, 1598–601.
[38]   Canacki M and Van Gerpen J (2003), “A pilot plant to produce biodiesel from high free fatty acid feedstocks,” Transactions of the ASAE, 46(4), 945-54.
[39]   Issariyakul T, Kulkarni M G, Dalai A K and Bakhshi N N (2007), “Production of biodiesel from waste fryer grease using mixed methanol/ethanol system,” Fuel ProcessingTechnology, 88(5), 429–36.
[40]   Kirubakaran M, Mozhi Selvan A. (2017), “A comprehensive review of low cost biodiesel production from waste chicken fat,” Renewable and Sustainable Energy Reviews, 82: 390-401.
[41]   Verhe R, Van Hoed V, Echim C, Stevens C, De Greyt W and Kellens M (2008), “Production of biofuel from lipids and alternative resources,”  in Biocatalysis and Bioenergy, eds. C T Hou and S Jei-Fu, Wiley & Sons, UK, 185–94.
[42]   Verhe R, Echim C, Stevens C V, Van Hoed V, De Grey W and Zyaykina N (2009), “Valorization of alternative lipid resources for bioenergy,”  First International Conference on Renewable Resources and Biorefineries, Ghent, June 10–12.
[43]   Di Serio M, Tesser R, Pengmei L and Santacesaria E (2008), “Heterogeneous catalyst for biodiesel production,” Energy & Fuels, 22(1), 207–17.
[44]   Lotero E, Goodwin Y G, Bruce D, Suwannakaran K, Liu Y and Lopez D E (2006), “The catalysis of biodiesel synthesis,”  Catalysis, 19, 41–84.
[45]   www.amberlyst.com/biodieselsolutions.htm.
[46]   Bournay L, Casanave D, Delfort B, Hillion G and Chodorge J A (2005), “New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants, Catalysis Today,” International Conference on Gas-Fuel. 106(1-4), 190-2.
[47]   Catalin Inc. (2009), “A solid catalyst unlike the rest, Biodiesel Magazine, Edition from July.
[48]   Bonelli B, Cozzolino M, Tesser M, Di Serio M, Piumetti M, Garrone E and Santacesaria E (2007). “Study of the surface acidity of Tio2/Sio2 catalysts by means of FTIR measurements of CO and NH3 adsorption,” Journal of catalysis. 246(2), 293-300.
[49]   Ozgul-Yucel S and Turkay S (2002), “Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil,”  Journal of the American Oil Chemists’ Society, 79, 611–13.
[50]   Siler-Marinkovic S and Tomasevic A (1998), “Transesterification of sunflower oil in situ,” Fuel, 77(12), 1389–91.
[51]   Cooking oils (WCO): Role of ion-exchange resin,” Fuel, 87, 1789–98.
[52]   Qian J, Wang F, Liu S and Yun Z (2008), “In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal,”  Bioresource Technology, 99(18), 9009–12.
[53]   Demirbas A (2002), “Diesel fuel from vegetable oil via transesterification and soap pyrolysis,” Energy Sources, 24, 835–41.
[54]   Demirbas A (2003), “Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods,” A survey,” Energy Conversion Management, 44(13), 2093–109.
[55]   Madras G, Kolluru C and Kumar R (2004), “Synthesis of biodiesel in supercritical fluids,” Fuel, 83(14–15), 2029–33.
[56]   Demirbas A (2008), “The importance of bioethanol and biodiesel from biomass,” Energy Sources, Part B, 3, 177–85.
[57]   Ishikawa T, Yamazaki R, Inamato S and Sagara Y (2005), “Economic assessment on practical application of non-catalytic alcoholysis for biodiesel fuel production,”  Japan Journal of Food Engineering, 6, 113–20.
[58]   Imakara H, Minami E, Hari S and Saka S (2008), “Thermal stability of biodiesel in supercritical methanol,” Fuel, 87, 1–6.
[59]   Demirbas A (2007), “Thermal degradation of fatty acids in biodiesel production by supercritical methanol,” Energy exploration & exploitation, 25(1), 63–70.
[60]   Imakara H, Xin Y and Saka S (2009), “Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production,” Fuel, 88(7), 1329–32.
[61]   Aimareti N, Manuale D L, Mazzieri V M, Vera C R and Yori J C (2009), “Batch study of glycerol decomposition in one-stage superitical production of biodiesel,” Energy and fuels, 23: 1076-80.
[62]   www.axens.net, Esterfip-H™ A Breakthrough in Biodiesel Production.
[63]   Taherkhani M and Sadrameli S M. (2017), “An improvement and optimization study of biodiesel production from linseed via in-situ transesterification using a co-solvent,” Renewable Energy, 119: 787-794.
[64]   Suarez P, Rubim Y and Alves M (2008), “New catalytic systems for vegetable oil transesterification based on tin compounds,”  in Biocatalysis and Bioenergy, eds. C T Hou and J F, Shaw, John Wiley & Sons, Inc., Hoboken, 97–105.
[65]   Erhan S, Dunn R, Knothe G and Moser R (2008), “Fuel properties and performance of biodiesel,”  in Biocatalysis and Bioenergy, eds. C T Hou and J F Shaw, John Wiley & Sons, Inc., Hoboken, 1–45.
[66]   Knothe G, Van Gerpen J and Krahl (2005), “Fuel properties,” in The Biodiesel Handbook Edition, AOCS Press, Champaign, Illinois, 84–162.