مروری بر فعالیت‎های گرد و غبار در ایران و پارامترهای موثر بر نشست گرد و غبار بر سطح پنل‎های فتوولتاییک

نوع مقاله : علمی-ترویجی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

2 استاد، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

اکثر مناطقی که دارای پتانسیل تابشی بالایی جهت توسعه پنل‎های فتوولتاییک می‎باشند، مناطقی خشک و بیابانی همچون خاورمیانه و شمال آفریقا هستند. در چنین مناطقی، پدیده گرد و غبار به شدت بر عملکرد پنل‎های فتوولتاییک تاثیر می‎گذارد. مقاله حاضر با هدف بررسی فعالیت‎های گرد و غبار در ایران و نیز پارامترهای موثر بر نشست گرد و غبار بر سطح پنل‎های فتوولتاییک، به مرور جامع پژوهش‎های صورت گرفته در این حوزه پرداخته است. بررسی‎های انجام شده در این حوزه نشان داد که در سال‎های اخیر، تعدد و شدت فعالیت‎های گرد و غبار در ایران به صورت قابل توجهی افزایش یافته است. دلایل این افزایش و منشاهای اصلی فعالیت‎های گرد و غبار در ایران به تفضیل تشریح گردید. در ادامه، ویژگی‎های فیزیکی و شیمیایی ذرات گرد و غبار جمع‎آوری شده از سطح پنل‎ها در مناطق مختلف تشریح گردید. علاوه بر این با مرور پیشینه پژوهش، پارامترهای موثر در فرایند نشست گرد و غبار بر سطح پنل‎های فتوولتاییک دسته‎بندی گردید و نحوه تاثیر هر یک از این پارامترها به‎طور مفصل تشریح شد. نتایج این پژوهش می‎تواند به‎عنوان مرجع کاملی برای استفاده پژوهش‎گران، طراحان و مهندسان در مناطقیکه با مشکل گرد و غبار دست و پنجه نرم می‎کنند، قرار گیرد.

کلیدواژه‌ها


[1]             R. Modarres and S. Sadeghi, “Spatial and temporal trends of dust storms across desert regions of Iran,” Nat. Hazards, pp. 1–14, 2018.
[2]             P. Broomandi, B. Dabir, B. Bonakdarpour, and Y. Rashidi, “Identification of dust storm origin in South –West of Iran,” J. Environ. Heal. Sci. Eng., vol. 15, no. 1, p. 16, Dec. 2017.
[3]             A. Keramat, B. Marivani, and M. Samsami, “Climatic change, drought and dust crisis in Iran,” World Acad. Sci. Eng. Technol., vol. 6, pp. 10–13, 2011.
[4]             K. Ashrafi, M. Shafiepour-Motlagh, A. Aslemand, and S. Ghader, “Dust storm simulation over Iran using HYSPLIT,” J. Environ. Heal. Sci. Eng., vol. 12, no. 1, p. 9, 2014.
[5]             R. Mashayekhi, P. Irannejad, J. Feichter, and A. A. Bidokhti, “Implementation of a new aerosol HAM model within the Weather Research and Forecasting (WRF) modeling system,” Geosci. Model Dev. Discuss., vol. 2, no. 2, pp. 681–707, 2009.
[6]             F. Taghavi, E. Owlad, and S. A. Ackerman, “Enhancement and identification of dust events in the south-west region of Iran using satellite observations,” J. Earth Syst. Sci., vol. 126, no. 2, p. 28, 2017.
[7]             S. Movahedi and S. M. Afzali, “Analysis of the Number of Dusty days in the West and South West of Iran,” vol. 2, no. 10, pp. 18–21, 2013.
[8]             F. Taghavi, F. Taghavi, and A. Asadi, “The use of Satellite Images to monitor the position of Dust Storm over Persian Gulf region,” in 37th COSPAR Scientific Assembly, 2008, vol. 37, pp. 3117–3124.
[9]             M. R. Jamalizadeh, A. Moghaddamnia, J. Piri, V. Arbabi, M. Homayounifar, and A. Shahryari, “Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City) 1,” 2008.
[10]          E. Akrami, A. Gholami, M. Ameri, and M. Zandi, “Integrated an innovative energy system assessment by assisting solar energy for day and night time power generation: Exergetic and Exergo-economic investigation,” Energy Convers. Manag., vol. 175, pp. 21–32, Nov. 2018.
[11]          E. Akrami, I. Khazaee, and A. Gholami, “Comprehensive analysis of a multi-generation energy system by using an ener- gy-exergy methodology for hot water, cooling, power and hydrogen production Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for h,” Appl. Therm. Eng., 2017.
[12]          A. Gholami, A. Tajik, S. Eslami, and M. Zandi, “Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm,” J. Renew. Energy Environ., vol. 6, no. 2, pp. 8–14, 2019.
[13]          A. Aryanfar, A. Gholami, M. Pourgholi, S. Shahroozi, M. Zandi, and A. Khosravi, “Multi-criteria photovoltaic potential assessment using fuzzy logic in decision-making: A case study of Iran,” Sustain. Energy Technol. Assessments, vol. 42, no. April, p. 100877, Dec. 2020.
[14]          Y. Gholami, A. Gholami, M. Ameri, and M. Zandi, “Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan,” in 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 2018, pp. 3–12.
[15]          A. Gholami, M. Ameri, M. Zandi, R. G. Ghoachani, S. Eslami, and S. Pierfederici, “Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper,” IEEE J. Photovoltaics, vol. 10, no. 3, pp. 824–837, May 2020.
[16]          “Scopus - Analyze search results.” [Online]. Available: https://www-scopus-com. [Accessed: 28-Apr-2019].
[17]          A. Gholami, S. Eslami, A. Tajik, M. Ameri, R. Gavagsaz Ghoachani, and M. Zandi, “A review of dust removal methods from the surface of photovoltaic panels,” Mech. Eng. Sharif J., vol. 35, no. 2, pp. 117–127, Dec. 2019.
[18]          A. Gholami et al., “A Review of the Effect of Dust on the Performance of Photovoltaic Panels,” Iran. Electr. Ind. J. Qual. Product., vol. 8, no. 15, pp. 93–102, 2019.
[19]          A. A. Salim, F. S. Huraib, and N. N. Eugenio, “PV power-study of system options and optimization,” in EC photovoltaic solar conference. 8, 1988, pp. 688–692.
[20]          A. H. Hassan, U. A. Rahoma, H. K. Elminir, and A. M. Fathy, “Effect of airborne dust concentration on the performance of PV modules,” J. Astron. Soc. Egypt, vol. 13, no. 1, pp. 24–38, 2005.
[21]          H. P. Garg, “Effect of dirt on transparent covers in flat-plate solar energy collectors,” Sol. Energy, vol. 15, no. 4, pp. 299–302, 1974.
[22]          A. Sayigh, S. Al-Jandal, and H. Ahmed, “Dust effect on solar flat surfaces devices in Kuwait,” in Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy, 1985, pp. 2–20.
[23]          M. S. El-Shobokshy and F. M. Hussein, “Effect of dust with different physical properties on the performance of photovoltaic cells,” Sol. Energy, vol. 51, no. 6, pp. 505–511, Dec. 1993.
[24]          D. Goossens and E. Van Kerschaever, “Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance,” Sol. Energy, vol. 66, no. 4, pp. 277–289, 1999.
[25]          Z. I. Offer and D. Goossens, “Airborne dust in the Northern Negev Desert (January–December 1987): general occurrence and dust concentration measurements,” J. Arid Environ., vol. 18, no. 1, pp. 1–19, Jan. 1990.
[26]          H. Hottel and B. Woertz, “Performance of flat-plate solar-heat collectors,” Trans. ASME (Am. Soc. Mech. Eng.);(United States), vol. 64, 1942.
[27]          J. M. Prospero and P. J. Lamb, “African droughts and dust transport to the Caribbean: Climate change implications,” Science (80-. )., vol. 302, no. 5647, pp. 1024–1027, 2003.
[28]          S. Rodríguez et al., “Modulation of Saharan dust export by the North African dipole,” Atmos. Chem. Phys., vol. 15, no. 13, pp. 7471–7486, 2015.
[29]          F. Solmon, V. S. Nair, and M. Mallet, “Increasing Arabian dust activity and the Indian summer monsoon,” Atmos. Chem. Phys, vol. 15, no. 14, pp. 8051–8064, 2015.
[30]          M. Antón et al., “Evaluation of the aerosol forcing efficiency in the UV erythemal range at Granada, Spain,” J. Geophys. Res. Atmos., vol. 116, no. D20, 2011.
[31]          P. J. Prakash, G. Stenchikov, S. Kalenderski, S. Osipov, and H. Bangalath, “The impact of dust storms on the Arabian Peninsula and the Red Sea.,” Atmos. Chem. Phys. Discuss., vol. 14, no. 13, 2014.
[32]          A. Valenzuela et al., “Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain),” Atmos. Res., vol. 154, pp. 1–13, 2015.
[33]          M. Gharibzadeh, K. Alam, A. A. Bidokhti, Y. Abedini, and A. Masoumi, “Radiative Effects and Optical Properties of Aerosol during Two Dust Events in 2013 over Zanjan, Iran,” Aerosol Air Qual. Res., vol. 17, no. 3, pp. 888–898, 2017.
[34]          M. Sharifikia, “Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery,” Nat. hazards, vol. 65, no. 1, pp. 201–217, 2013.
[35]          A. Rashki, M. Arjmand, and D. G. Kaskaoutis, “Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran,” Aeolian Res., vol. 24, pp. 145–160, 2017.
[36]          M. Waldinger, “The effects of climate change on internal and international migration: implications for developing countries,” Cent. Clim. Chang. Econ. Policy Work. Pap., vol. 217, 2015.
[37]          A. Neisi et al., “Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran,” Toxin Rev., vol. 35, no. 1–2, pp. 16–23, 2016.
[38]          Y. O. Khaniabadi et al., “Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the Middle Eastern Dust storms,” Environ. Sci. Pollut. Res., pp. 1–9, 2017.
[39]          W. W. S. Tam, T. W. Wong, A. H. S. Wong, and D. S. C. Hui, “Effect of dust storm events on daily emergency admissions for cardiovascular diseases,” Respirology, vol. 17, no. 3, pp. 655–660, 2012.
[40]          A. Miri, H. Ahmadi, A. Ghanbari, and A. Moghaddamnia, “Dust storms impacts on air pollution and public health under hot and dry climate,” Int. J. Energy Env., vol. 2, no. 1, pp. 101–105, 2007.
[41]          G. Goudarzi, S. Geravandi, M. J. Mohammadi, S. Saeidimehr, A. Ghomaishi, and S. H. Salmanzadeh, “Health endpoints caused by PM10 Exposure in Ahvaz, Iran,” Iran J Heal. Saf Env., vol. 1, 2014.
[42]          Z. Soleimani, G. Goudarzi, A. Sorooshian, M. B. Marzouni, and H. Maleki, “Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol,” Atmos. Environ., vol. 138, pp. 135–143, 2016.
[43]          H. Cao, J. Liu, G. Wang, G. Yang, and L. Luo, “Identification of sand and dust storm source areas in Iran,” J. Arid Land, vol. 7, no. 5, pp. 567–578, 2015.
[44]          M. Rezazadeh, P. Irannejad, and Y. Shao, “Climatology of the Middle East dust events,” Aeolian Res., vol. 10, pp. 103–109, 2013.
[45]          A. Zarasvandi, “Environmental impacts of dust storms in the Khuzestan province,” Environ. Prot. Agency Khuzestan Prov. Intern. Report, 375p, 2009.
[46]          M. S. Najafi, F. Khoshakhllagh, S. M. Zamanzadeh, M. H. Shirazi, M. Samadi, and S. Hajikhani, “Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran,” Arab. J. Geosci., vol. 7, no. 12, pp. 5367–5381, 2014.
[47]          A. Rashki, D. G. Kaskaoutis, P. G. Eriksson, M. Qiang, and P. Gupta, “Dust storms and their horizontal dust loading in the Sistan region, Iran,” Aeolian Res., vol. 5, pp. 51–62, 2012.
[48]          A. Rashki, D. G. Kaskaoutis, A. S. Goudie, and R. A. Kahn, “Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran,” Sci. Total Environ., vol. 463, pp. 552–564, 2013.
[49]          A. Rashki, C. J. deW Rautenbach, P. G. Eriksson, D. G. Kaskaoutis, and P. Gupta, “Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran,” Air Qual. Atmos. Heal., vol. 6, no. 1, pp. 123–135, 2013.
[50]          A. Rashki, D. G. Kaskaoutis, P. Francois, P. G. Kosmopoulos, and M. Legrand, “Dust-storm dynamics over Sistan region, Iran: seasonality, transport characteristics and affected areas,” Aeolian Res., vol. 16, pp. 35–48, 2015.
[51]          D. G. Kaskaoutis et al., “Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran,” Clim. Dyn., vol. 45, no. 1–2, pp. 407–424, 2015.
[52]          D. G. Kaskaoutis et al., “The Caspian Sea–Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia,” Glob. Planet. Change, vol. 137, pp. 10–23, 2016.
[53]          F. Abdi Vishkaee, C. Flamant, J. Cuesta, P. Flamant, and H. R. Khalesifard, “Multiplatform observations of dust vertical distribution during transport over northwest Iran in the summertime,” J. Geophys. Res. Atmos., vol. 116, no. D5, 2011.
[54]          F. Abdi Vishkaee, C. Flamant, J. Cuesta, L. Oolman, P. Flamant, and H. R. Khalesifard, “Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study,” J. Geophys. Res. Atmos., vol. 117, no. D3, 2012.
[55]          A. Masoumi, H. R. Khalesifard, A. Bayat, and R. Moradhaseli, “Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran,” Atmos. Res., vol. 120, pp. 343–355, 2013.
[56]          M. Notaro, Y. Yu, and O. V Kalashnikova, “Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought,” J. Geophys. Res. Atmos., vol. 120, no. 19, 2015.
[57]          V. K. Sissakian, N. Al-Ansari, and S. Knutsson, “Sand and Dust storm events in Iraq,” Nat Sci, vol. 5, 2013.
[58]          A. Zarasvandi, E. J. M. Carranza, F. Moore, and F. Rastmanesh, “Spatio-temporal occurrences and mineralogical--geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran),” J Geochem Explor, vol. 111, 2011.
[59]          A. A. Kazem, M. T. Chaichan, and H. A. Kazem, “Dust effect on photovoltaic utilization in Iraq,” Renew. Sustain. Energy Rev., vol. 37, pp. 734–749, 2014.
[60]          F. Taghavi, E. Owlad, T. Safarrad, and P. Irannejad, “Identifying and monitoring dust storm in the western part of Iran using remote sensing techniques,” Earth Sp. Phys., vol. 1, no. May, pp. 83–96, 2013.
[61]          O. Alizadeh-Choobari, A. Sturman, and P. Zawar-Reza, “Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem,” Meteorol. Atmos. Phys., vol. 127, no. 6, pp. 635–648, 2015.
[62]          S. Kamali, A. Mofidi, A. Zarrin, and H. Nazaripour, “Sensitivity studies of the forth-generation regional climate model simulation of dust storms in the Sistan plain, Iran,” Model. Earth Syst. Environ., pp. 1–13, 2017.
[63]          M. Gharibzadeh, K. Alam, Y. Abedini, A. A. Bidokhti, and A. Masoumi, “Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran,” J. Atmos. Solar-Terrestrial Phys., vol. 164, pp. 268–275, 2017.
[64]          M. Khoshsima, A. A. Bidokhti, and F. Ahmadi-Givi, “Variations of aerosol optical depth and Angstrom parameters at a suburban location in Iran during 2009–2010,” J. earth Syst. Sci., vol. 123, no. 1, pp. 187–199, 2014.
[65]          S. Farhadipour, M. Azadi, A. Aliakbari Bikdokhti, O. Alizadeh-Choobari, and H. Allah Sayari, “Dust storms in west and southwest Iran and their impact on radiation fluxes: A case study,” Iran. J. Geophys., vol. 11, no. 3, pp. 75–90, 2017.
[66]          S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi, and Y. Noorollahi, “Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future,” Energy Convers. Manag., vol. 200, no. May, p. 112107, Nov. 2019.
[67]          S. Eslami, A. Gholami, H. Akhbari, M. Zandi, and Y. Noorollahi, “Solar-based multi-generation hybrid energy system; simulation and experimental study,” Int. J. Ambient Energy, pp. 1–13, Jul. 2020.
[68]          T. R. B. and R. G. H. Qasem*, “EFFECT OF SHADING CAUSED BY DUST ON CADMIUM TELLURIDEnPHOTOVOLTAIC MODULEL,” 2011.
[69]          S. A. M. Said and H. M. Walwil, “Fundamental studies on dust fouling effects on PV module performance,” Sol. Energy, vol. 107, pp. 328–337, Sep. 2014.
[70]          R. Appels et al., “Effect of soiling on photovoltaic modules,” Sol. Energy, vol. 96, pp. 283–291, Oct. 2013.
[71]          R. Appels, B. Muthirayan, A. Beerten, R. Paesen, J. Driesen, and J. Poortmans, “The effect of dust deposition on photovoltaic modules,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012, no. June, pp. 001886–001889.
[72]          N. Bouaouadja, S. Bouzid, M. Hamidouche, C. Bousbaa, and M. Madjoubi, “Effects of sandblasting on the efficiencies of solar panels,” Appl. Energy, vol. 65, no. 1–4, pp. 99–105, Apr. 2000.
[73]          G. A. Mastekbayeva and S. Kumar, “Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate,” Sol. Energy, vol. 68, no. 2, pp. 135–141, Feb. 2000.
[74]          S. L. O’Hara, M. L. Clarke, and M. S. Elatrash, “Field measurements of desert dust deposition in Libya,” Atmos. Environ., vol. 40, no. 21, pp. 3881–3897, 2006.
[75]          A. O. Mohamed and A. Hasan, “Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment,” J. Basic Appl. Sci. Res., vol. 2, no. 11, pp. 11030–11036, 2012.
[76]          H. A. Kazem and M. T. Chaichan, “Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman,” Sol. Energy, vol. 139, pp. 68–80, Dec. 2016.
[77]          J. Wang, H. Gong, and Z. Zou, “Modeling of Dust Deposition Affecting Transmittance of PV Modules,” J. Clean Energy Technol., vol. 5, no. 3, pp. 217–221, May 2017.
[78]          M. S. El-Shobokshy, A. Mujahid, and A. K. M. Zakzouk, “Effects of dust on the performance of concentrator photovoltaic cells,” IEE Proc. I Solid State Electron Devices, vol. 132, no. 1, p. 5, 1985.
[79]          H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Convers. Manag., vol. 47, no. 18–19, pp. 3192–3203, Nov. 2006.
[80]          A. Gholami, I. Khazaee, S. Eslami, M. Zandi, and E. Akrami, “Experimental investigation of dust deposition effects on photo-voltaic output performance,” Sol. Energy, vol. 159, pp. 346–352, 2018.
[81]          B. S. Yilbas et al., “Characterization of Environmental Dust in the Dammam Area and Mud After-Effects on Bisphenol-A Polycarbonate Sheets,” Sci. Rep., vol. 6, no. 1, p. 24308, Jul. 2016.
[82]          G. Hassan, B. S. Yilbas, S. A. M. Said, N. Al-Aqeeli, and A. Matin, “Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air,” Sci. Rep., vol. 6, no. 1, p. 30253, Sep. 2016.
[83]          E. A. FitzPatrick and E. A. Fitzpatrick, Soil microscopy and micromorphology, Illustrate., vol. 158. the University of Michigan: John Wiley & Sons New York, 1993.
[84]          H. Zhang, X. Li, C. Du, and H. Qi, “Corrosion behavior and mechanism of the automotive hot-dip galvanized steel with alkaline mud adhesion,” Int. J. Miner. Metall. Mater., vol. 16, no. 4, pp. 414–421, Aug. 2009.
[85]          Z. Jie, Z. Chuande, Z. Fuzhong, L. Shuhua, F. Miao, and T. Yike, “Experimental and numerical modeling of particle levitation and movement behavior on traveling-wave electric curtain for particle removal,” Part. Sci. Technol., vol. 37, no. 6, pp. 737–745, Aug. 2019.
[86]          B. S. Yilbas, G. Hassan, H. Ali, and N. Al-Aqeeli, “Environmental dust effects on aluminum surfaces in humid air ambient,” Sci. Rep., vol. 7, no. 1, p. 45999, Dec. 2017.
[87]          B. S. Yilbas, H. Ali, M. M. Khaled, N. Al-Aqeeli, N. Abu-Dheir, and K. K. Varanasi, “Influence of dust and mud on the optical, chemical, and mechanical properties of a pv protective glass,” Sci. Rep., vol. 5, p. 15833, Oct. 2015.
[88]          B. S. Yilbas, H. Ali, A. Al-Sharafi, and N. Al-Aqeeli, “Environmental mud adhesion on optical glass surface: Effect of mud drying temperature on surface properties,” Sol. Energy, vol. 150, pp. 73–82, Jul. 2017.
[89]          S. A. M. Said, N. Al-Aqeeli, and H. M. Walwil, “The potential of using textured and anti-reflective coated glasses in minimizing dust fouling,” Sol. Energy, vol. 113, pp. 295–302, Mar. 2015.
[90]          M. Piliougine et al., “Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates,” Appl. Energy, vol. 112, pp. 626–634, Dec. 2013.
[91]          A. Bianchini, M. Gambuti, M. Pellegrini, and C. Saccani, “Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements,” Renew. Energy, vol. 85, pp. 1–11, Jan. 2016.
[92]          M. Duell et al., “IMPACT OF STRUCTURED GLASS ON LIGHT TRANSMISSION, TEMPERATURE AND POWER OF PV MODULES,” in 25th European Photovoltaic Solar Energy Conf. and Exhibition, 2010, pp. 3867–72.
[93]          N. M. Nahar and J. P. Gupta, “Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India,” Sol. Wind Technol., vol. 7, no. 2–3, pp. 237–243, Jan. 1990.
[94]          K. Brown, T. Narum, and N. Jing, “Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 001881–001885.
[95]          L. L. Kazmerski et al., “Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale,” IEEE J. Photovoltaics, vol. 6, no. 3, pp. 719–729, May 2016.
[96]          R. E. Cabanillas and H. Munguía, “Dust accumulation effect on efficiency of Si photovoltaic modules,” J. Renew. Sustain. Energy, vol. 3, no. 4, p. 043114, Jul. 2011.
[97]          P. Grunow, D. Sauter, V. Hoffmann, D. Huljić, B. Litzenburger, and L. Podlowski, “The Influence of Textured Surfaces of Solar Cells and Modules on the Energy of PV Systems,” Pvsec 20, no. June, pp. 2–5, 2005.
[98]          M. P. Rocha et al., “Comparative Analysis of the Dust Losses in Photovoltaic Modules With Different Cover Glasses,” 23rd Eur. Photovolt. Sol. Energy Conf., no. September, pp. 2698–2700, 2008.
[99]          A. Gholami, A. A. Alemrajabi, and A. Saboonchi, “Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications,” Sol. Energy, vol. 157, pp. 559–565, Nov. 2017.
[100]        K. J. McLean, “Cohesion of precipitated dust layer in electrostatic precipitators,” J. Air Pollut. Control Assoc., vol. 27, no. 11, pp. 1100–1103, 1977.
[101]        X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, “Superhydrophobic surfaces: from structural control to functional application,” J. Mater. Chem., vol. 18, no. 6, pp. 621–633, 2008.
[102]        L. Jing, Z. Zhi-Jun, Y. Ji-Lin, and B. Yi-Long, “A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement,” Chinese Phys. Lett., vol. 26, no. 8, p. 086802, Aug. 2009.
[103]        L. K. Verma et al., “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy, vol. 36, no. 9, pp. 2489–2493, Sep. 2011.
[104]        S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2920–2925, Jun. 2012.
[105]        A. Kumar, T. Staedler, and X. Jiang, “Role of relative size of asperities and adhering particles on the adhesion force,” J. Colloid Interface Sci., vol. 409, pp. 211–218, 2013.
[106]        P. G. C. Petean and M. L. Aguiar, “Determining the adhesion force between particles and rough surfaces,” Powder Technol., vol. 274, pp. 67–76, 2015.
[107]        S. A. M. Said, G. Hassan, H. M. Walwil, and N. Al-Aqeeli, “The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies,” Renew. Sustain. Energy Rev., vol. 82, no. May 2017, pp. 743–760, Feb. 2018.
[108]        M. Corn, “The Adhesion of Solid Particles to Solid Surfaces II,” J. Air Pollut. Control Assoc., vol. 11, no. 12, pp. 566–584, 1961.
[109]        G. W. Penney and E. H. Klingler, “Contact potentials and the adhesion of dust,” Trans. Am. Inst. Electr. Eng. Part I Commun. Electron., vol. 81, no. 3, pp. 200–204, 1962.
[110]        P. Somasundaran, H. K. Lee, E. D. Shchukin, and J. Wang, “Cohesive force apparatus for interactions between particles in surfactant and polymer solutions,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 266, no. 1–3, pp. 32–37, Sep. 2005.
[111]        L. Kazmerski, S. C. Costa, M. Machado, and A. S. A. C. Diniz, “Dust in the wind: Soiling of solar devices : Is there a Holy Grail solution? (Conference Presentation),” 2016, vol. 9938, p. 993807.
[112]        J. R. Gaier, M. E. Perez-Davis, and M. Marabito, “Aeolian removal of dust from photovoltaic surfaces on Mars,” 1990.
[113]        J. R. Gaier and M. E. Perez-davis, “Effect of Particle Size of Martian Dust on the Degradation of Photovoltaic Cell Performance,” in International Solar Energy Conference, 1992, no. April 4-8, pp. 1–17.
[114]        M. J. Adinoyi and S. A. M. M. Said, “Effect of dust accumulation on the power outputs of solar photovoltaic modules,” Renew. energy, vol. 60, pp. 633–636, Dec. 2013.
[115]        B. M. A. Mohandes, L. El-Chaar, and L. A. Lamont, “Application study of 500 W photovoltaic (PV) system in the UAE,” Appl. Sol. Energy, vol. 45, no. 4, pp. 242–247, Dec. 2009.
[116]        F. Touati, M. Al-Hitmi, and H. Bouchech, “Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies,” in 2012 First International Conference on Renewable Energies and Vehicular Technology, 2012, pp. 78–83.
[117]        E. Boykiw, “The effect of settling dust in the Arava Valley on the performance of solar photovoltaic panels. The Senior Thesis in Department of Environmental Science Allegheny College Meadville, Pennsylvania, USA, 36 pp.,” 2011.
[118]        A. A. Hegazy, “Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors,” Renew. Energy, vol. 22, no. 4, pp. 525–540, Apr. 2001.
[119]        A. Gholami, A. Saboonchi, and A. A. Alemrajabi, “Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications,” Renew. Energy, vol. 112, pp. 466–473, Nov. 2017.
[120]        Y. Callot, B. Marticorena, G. Bergametti, and D. De, “Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the Sahara desert,” Geodin. Acta, vol. 13, no. 5, pp. 245–270, Oct. 2000.
[121]        D. Goossens, Z. Y. Offer, and A. Zangvil, “Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors,” Sol. Energy, vol. 50, no. 1, pp. 75–84, Jan. 1993.
[122]        H. A. AlBusairi and H. J. Möller, “Performance evaluation of CdTe PV modules under natural outdoor conditions in Kuwait,” in 25th European Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, September, 2010, pp. 6–10.
[123]        A. Rouholamini, H. Pourgharibshahi, R. Fadaeinedjad, and G. Moschopoulos, “Optimal tilt angle determination of photovoltaic panels and comparing of their mathematical model predictions to experimental data in Kerman,” in Electrical and Computer Engineering (CCECE), 2013 26th Annual IEEE Canadian Conference on, 2013, pp. 1–4.
[124]        P. Talebizadeh, M. A. Mehrabian, and M. Abdolzadeh, “Prediction of the optimum slope and surface azimuth angles using the genetic algorithm,” Energy Build., vol. 43, no. 11, pp. 2998–3005, 2011.