مروری بر مطالعات تجربی انجام شده بر روی آب شیرین کن های خورشیدی فعال و غیر فعال در ایران و جهان

نوع مقاله : مقاله ترویجی

نویسندگان

1 عضو هیات علمی / دانشگاه صنعتی مالک اشتر

2 کارشناسی ارشد، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران غرب

چکیده

دستگاه‌های آب‌شیرین‌کن خورشیدی تبخیری به دلیل هزینه‌ی ساخت بسیار پایین و نداشتن مکانیزم‌های پیچیده و همچنین نیاز کمتر به سرویس و نگهداری امروزه مورد استقبال بسیاری از محققین قرار‌ گرفته‌اند. تحقیقات بسیار وسیعی اعم از مدل‌سازی، بهینه‌سازی، ترکیب مکانیزم‌ها، آنالیز اقتصادی و همچنین بومی‌سازی انواع مدل‌های فعال و غیرفعال این دستگاه‌ها تا به امروز انجام شده است. نتایج حاصل از این تحقیقات به همراه پتانسیل بالای این دستگاه‌ها جهت پیاده‌سازی ایده‌های جدید بر روی آن‌ها منجر به ساخت و آزمایش طیف گسترده‌ای از انواع مدل‌های مختلف شده است. قسمت عمده‌ی این تحقیقات در کشورهای آسیایی و آفریقایی که دارای آب و هوای گرم و خشک می‌باشند انجام شده و همواره تاکید بر مناسب بودن این دستگاه‌ها جهت استفاده در مناطق دور‌افتاده بوده است. در حال حاضر تحقیقات بر روی این دستگاه‌ها در بیشتر نقاط جهان و به میزان زیادی ادامه دارد. در تحقیق حاضر به مرور تحقیقات انجام‌شده تجربی بر روی این دستگاه‌ها پرداخته است. این بررسی نشان می‌دهد که همواره تمرکز بر به‌کارگیری روش‌های جدید و مقرون به صرفه، جهت افزایش میزان خروجی و راندمان حرارتی دستگاه‌ها می‌باشد که در دستگاه‌های نوع فعال و غیر فعال نتایج آن متفاوت است.

کلیدواژه‌ها


[1]          S. Maiti, C. Bhatt, P. Patel, and P. K. Ghosh, “Practical and sustainable household seawater desalination using an improved solar still,” Desalin. Water Treat., vol. 57, no. 8, pp. 3358–3371, 2016.
[2]          S. Rashidi, N. Rahbar, M. S. Valipour, and J. A. Esfahani, “Enhancement of solar still by reticular porous media: Experimental investigation with exergy and economic analysis,” Appl. Therm. Eng., vol. 130, pp. 1341–1348, 2018.
[3]          T. Arunkumar et al., “Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation,” J. Clean. Prod., vol. 195, pp. 1149–1161, 2018.
[4]          M. A. Pakdel, M. Hedayatizadeh, S. M. Tabatabaei, and N. Niknia, “An experimental study of a single-slope solar still with innovative side-troughs under natural circulation mode,” Desalination, vol. 422, no. September, pp. 174–181, 2017.
[5]          M. Naroei, F. Sarhaddi, and F. Sobhnamayan, “Efficiency of a photovoltaic thermal stepped solar still: Experimental and numerical analysis,” Desalination, vol. 441, no. March, pp. 87–95, 2018.
[6]          M. Fathy, H. Hassan, and M. Salem Ahmed, “Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance,” Sol. Energy, vol. 163, no. January, pp. 54–61, 2018.
[7]          K. Rabhi, R. Nciri, F. Nasri, C. Ali, and H. Ben Bacha, “Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser,” Desalination, vol. 416, no. April, pp. 86–93, 2017.
[8]          M. Feilizadeh, M. R. Karimi Estahbanati, K. Jafarpur, R. Roostaazad, M. Feilizadeh, and H. Taghvaei, “Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors,” Appl. Energy, vol. 152, pp. 39–46, 2015.
[9]          M. Feilizadeh, M. Soltanieh, M. R. Karimi Estahbanati, K. Jafarpur, and S. S. Ashrafmansouri, “Optimization of geometrical dimensions of single-slope basin-type solar stills,” Desalination, vol. 424, no. October, pp. 159–168, 2017.
[10]        Z. M. Omara, A. E. Kabeel, and M. M. Younes, “Enhancing the stepped solar still performance using internal and external reflectors,” Energy Convers. Manag., vol. 78, pp. 876–881, 2014.
[11]        P. Pounraj et al., “Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance,” Energy Convers. Manag., vol. 168, no. May, pp. 371–381, 2018.
[12]        H. N. Panchal, “Enhancement of distillate output of double basin solar still with vacuum tubes,” J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, pp. 170–175, 2015.
[13]        G. S. Dhindsa and M. K. Mittal, “Experimental study of basin type vertical multiple effect diffusion solar still integrated with mini solar pond to generate nocturnal distillate,” Energy Convers. Manag., vol. 165, no. March, pp. 669–680, 2018.
[14]        M. Faegh and M. B. Shafii, “Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes,” Desalination, vol. 409, pp. 128–135, 2017.
[15]        F. F. Tabrizi, M. Dashtban, H. Moghaddam, and K. Razzaghi, “Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still,” Desalination, vol. 260, no. 1–3, pp. 239–247, 2010.
[16]        R. S. Hansen, C. S. Narayanan, and K. K. Murugavel, “Performance analysis on inclined solar still with different new wick materials and wire mesh,” Desalination, vol. 358, pp. 1–8, 2015.
[17]        M. A. Eltawil and Z. M. Omara, “Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air,” Desalination, vol. 349, pp. 1–9, 2014.
[18]        D. Inan, “Schematicsofthesolarstill ",” vol. 123, pp. 79–83, 1999.
[19]        A. K. Tiwari and G. N. Tiwari, “Effect of water depth on heat and mass transfer in a solar still:in summer climate condition,” Desalination, vol. 217, pp. 267–275, 2006.
[20]        B. Janarthanan, J. Chandrasekaran, and S. Kumar, “Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover,” Desalination, vol. 190, no. 1–3, pp. 51–62, 2006.
[21]        O. O. Badran, “Experimental study of the enhancement parameters on a single slope solar still productivity,” Desalination, vol. 209, no. 1-3 SPEC. ISS., pp. 136–143, 2007.
[22]        A. K. Tiwari and G. N. Tiwari, “Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: The effect of water depths,” Desalination, vol. 207, no. 1–3, pp. 184–204, 2007.
[23]        B. S. Kumar, S. Kumar, and R. Jayaprakash, “Performance analysis of a ‘V’ type solar still using a charcoal absorber and a boosting mirror,” Desalination, vol. 229, no. 1–3, pp. 217–230, 2008.
[24]        S. Abdallah, M. M. Abu-Khader, and O. Badran, “Effect of various absorbing materials on the thermal performance of solar stills,” Desalination, vol. 242, no. 1–3, pp. 128–137, 2009.
[25]        H. Tanaka, “Tilted wick solar still with external flat plate reflector: Optimum inclination of still and reflector,” Desalination, vol. 249, no. 1, pp. 411–415, 2009.
[26]        A. E. Kabeel, “Performance of solar still with a concave wick evaporation surface,” Energy, vol. 34, no. 10, pp. 1504–1509, 2009.
[27]        H. Tanaka, “Experimental study of a basin type solar still with internal and external reflectors in winter,” Desalination, vol. 249, no. 1, pp. 130–134, 2009.
[28]        H. Tanaka and Y. Nakatake, “Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter,” Sol. Energy, vol. 83, no. 6, pp. 785–789, 2009.
[29]        H. Sharon, K. S. Reddy, D. Krithika, and L. Philip, “Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects,” Desalination, vol. 410, pp. 30–54, 2017.
[30]        V. K. Dwivedi and G. N. Tiwari, “Experimental validation of thermal model of a double slope active solar still under natural circulation mode,” Desalination, vol. 250, no. 1, pp. 49–55, 2010.
[31]        F. F. Tabrizi and A. Z. Sharak, “Experimental study of an integrated basin solar still with a sandy heat reservoir,” Desalination, vol. 253, no. 1–3, pp. 195–199, 2010.
[32]        T. Arunkumar, K. Vinothkumar, A. Ahsan, R. Jayaprakash, and S. Kumar, “Experimental Study on Various Solar Still Designs,” ISRN Renew. Energy, vol. 2012, pp. 1–10, 2012.
[33]        Y. Taamneh and M. M. Taamneh, “Performance of pyramid-shaped solar still: Experimental study,” Desalination, vol. 291, pp. 65–68, 2012.
[34]        A. Ahsan, M. Imteaz, A. Rahman, B. Yusuf, and T. Fukuhara, “Design, fabrication and performance analysis of an improved solar still,” Desalination, vol. 292, pp. 105–112, 2012.
[35]        P. K. Srivastava and S. K. Agrawal, “Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers,” Desalination, vol. 311, pp. 198–205, 2013.
[36]        S. Rashidi, J. Abolfazli Esfahani, and N. Rahbar, “Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis,” Sol. Energy, vol. 153, pp. 41–50, 2017.
[37]        K. Voropoulos, E. Mathioulakis, and V. Belessiotis, “Experimental investigation of a solar still coupled with solar collectors,” Desalination, vol. 138, no. 1–3, pp. 103–110, 2001.
[38]        O. O. Badran and H. A. Al-Tahaineh, “The effect of coupling a flat-plate collector on the solar still productivity,” Desalination, vol. 183, no. 1–3, pp. 137–142, 2005.
[39]        Z. S. Abdel-Rehim and A. Lasheen, “Experimental and theoretical study of a solar desalination system located in Cairo, Egypt,” Desalination, vol. 217, no. 1–3, pp. 52–64, 2007.
[40]        S. Kumar and A. Tiwari, “Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still,” Energy Convers. Manag., vol. 51, no. 6, pp. 1219–1229, 2010.
[41]        M. A. Eltawil and Z. Zhengming, “Wind turbine-inclined still collector integration with solar still for brackish water desalination,” Desalination, vol. 249, no. 2, pp. 490–497, 2009.
[42]        A. J. N. Khalifa and H. A. Ibrahim, “Effect of inclination of the external reflector on the performance of a basin type solar still at various seasons,” Energy Sustain. Dev., vol. 13, no. 4, pp. 244–249, 2009.
[43]        S. Kumar, “Thermal-economic analysis of a hybrid photovoltaic thermal (PVT) active solar distillation system: Role of carbon credit,” Urban Clim., vol. 5, pp. 112–124, 2013.
[44]        H. Kargar Sharif Abad, M. Ghiasi, S. Jahangiri Mamouri, and M. B. Shafii, “A novel integrated solar desalination system with a pulsating heat pipe,” Desalination, vol. 311, pp. 206–210, 2013.
[45]        J. Xiong, G. Xie, and H. Zheng, “Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface,” Energy Convers. Manag., vol. 73, pp. 176–185, 2013.
[46]        S. Kumar, A. Dubey, and G. N. Tiwari, “A solar still augmented with an evacuated tube collector in forced mode,” Desalination, vol. 347, pp. 15–24, 2014.
[47]        F. Saeedi, F. Sarhaddi, and A. Behzadmehr, “Optimization of a PV/T (photovoltaic/thermal) active solar still,” Energy, vol. 87, pp. 142–152, 2015.
[48]        A. Riahi, K. Wan Yusof, B. S. Mahinder Singh, M. H. Isa, E. Olisa, and N. A. M. Zahari, “Sustainable potable water production using a solar still with photovoltaic modules-AC heater,” Desalin. Water Treat., vol. 57, no. 32, pp. 14929–14944, 2016.
[49]        D. B. Singh, J. K. Yadav, V. K. Dwivedi, S. Kumar, G. N. Tiwari, and I. M. Al-Helal, “Experimental studies of active solar still integrated with two hybrid PVT collectors,” Sol. Energy, vol. 130, pp. 207–223, 2016.
[50]        M. Yari, A. E. Mazareh, and A. S. Mehr, “A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module,” Desalination, vol. 398, pp. 1–11, 2016.
[51]        J. Ward, “A plastic solar water purifier with high output,” Sol. Energy, vol. 75, no. 5, pp. 433–437, 2003.
[52]        A. M. Radhwan, “Transient performance of a stepped solar still with built-in latent heat thermal energy storage,” Desalination, vol. 171, no. 1, pp. 61–76, 2005.
[53]        V. Velmurugan, S. Senthil Kumaran, V. Niranjan Prabhu, and K. Srithar, “Productivity enhancement of stepped solar still - Performance analysis,” Therm. Sci., vol. 12, no. 3, pp. 153–163, 2008.
[54]        S. Abdallah and O. O. Badran, “Sun tracking system for productivity enhancement of solar still,” Desalination, vol. 220, no. 1–3, pp. 669–676, 2008.
[55]        S. B. Sadineni, R. Hurt, C. K. Halford, and R. F. Boehm, “Theory and experimental investigation of a weir-type inclined solar still,” Energy, vol. 33, no. 1, pp. 71–80, 2008.
[56]        V. Velmurugan, J. Mandlin, B. Stalin, and K. Srithar, “Augmentation of saline streams in solar stills integrating with a mini solar pond,” Desalination, vol. 249, no. 1, pp. 143–149, 2009.
[57]        A. M. El-Zahaby, A. E. Kabeel, A. I. Bakry, S. A. El-Agouz, and O. M. Hawam, “Enhancement of solar still performance using a reciprocating spray feeding system-An experimental approach,” Desalination, vol. 267, no. 2–3, pp. 209–216, 2011.
[58]        M. Dashtban and F. F. Tabrizi, “Thermal analysis of a weir-type cascade solar still integrated with PCM storage,” Desalination, vol. 279, no. 1–3, pp. 415–422, 2011.
[59]        A. Alaudeen, K. Johnson, P. Ganasundar, A. Syed Abuthahir, and K. Srithar, “Study on stepped type basin in a solar still,” J. King Saud Univ. - Eng. Sci., vol. 26, no. 2, pp. 176–183, 2014.
[60]        R. Zarasvand Asadi, F. Suja, M. H. Ruslan, and N. A. Jalil, “The application of a solar still in domestic and industrial wastewater treatment,” Sol. Energy, vol. 93, pp. 63–71, 2013.
[61]        F. B. Ziabari, A. Z. Sharak, H. Moghadam, and F. F. Tabrizi, “Theoretical and experimental study of cascade solar stills,” Sol. Energy, vol. 90, pp. 205–211, 2013.
[62]        A. S. Abdullah, “Improving the performance of stepped solar still,” Desalination, vol. 319, pp. 60–65, 2013.
[63]        Y. A. F. El-Samadony and A. E. Kabeel, “Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still,” Energy, vol. 68, pp. 744–750, 2014.
[64]        S. A. El-Agouz, “Experimental investigation of stepped solar still with continuous water circulation,” Energy Convers. Manag., vol. 86, pp. 186–193, 2014.
[65]        A. Senthil Rajan, K. Raja, and P. Marimuthu, “Multi basin desalination using biomass heat source and analytical validation using RSM,” Energy Convers. Manag., vol. 87, pp. 359–366, 2014.
[66]        Y. A. F. El-Samadony, A. S. Abdullah, and Z. M. Omara, “Experimental study of stepped solar still integrated with reflectors and external condenser,” Exp. Heat Transf., vol. 28, no. 4, pp. 392–404, 2015.
[67]        F. Farshchi Tabrizi, M. Khosravi, and I. Shirzaei Sani, “Experimental study of a cascade solar still coupled with a humidification-dehumidification system,” Energy Convers. Manag., vol. 115, pp. 80–88, 2016.
[68]        R. Samuel Hansen and K. Kalidasa Murugavel, “Enhancement of integrated solar still using different new absorber configurations: An experimental approach,” Desalination, vol. 422, no. April, pp. 59–67, 2017.
[69]        E. Saettone, Y. Valencia-Tovar, and A. Gómez-de-la-Torre-Gastello, “Preliminary overview and evaluation of a stepped solar distiller with internal reflective walls and borosilicate vacuum tubes,” Desalination, vol. 413, pp. 136–143, 2017.
[70]        S. Joe Patrick Gnanaraj, S. Ramachandran, and David Santosh Christopher, “Enhancing the design to optimize the performance of double basin solar still,” Desalination, vol. 411, pp. 112–123, 2017.
[71]        F. Ketabchi, S. Gorjian, S. Sabzehparvar, Z. Shadram, M. S. Ghoreishi, and H. Rahimzadeh, “Experimental performance evaluation of a modified solar still integrated with a cooling system and external flat-plate reflectors,” Sol. Energy, vol. 187, no. June 2018, pp. 137–146, 2019.
[72]        S. Rashidi et al., “Enhancing the stepped solar still performance using internal and external reflectors,” Desalination, vol. 78, no. 1–3, pp. 392–404, 2017.
[73]        K. H. Nayi and K. V. Modi, “Pyramid solar still: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 81, no. April 2017, pp. 136–148, 2018.
[74]        P. KALITA, A. DEWAN, and S. BORAH, “A Review on Recent Developments in Fully,” Sadhana, vol. 41, no. 2, pp. 203–223, 2016.
[75]        H. N. Panchal and S. Patel, “An extensive review on different design and climatic parameters to increase distillate output of solar still,” Renew. Sustain. Energy Rev., vol. 69, no. December 2015, pp. 750–758, 2017.
[76]        A. F. Muftah, M. A. Alghoul, A. Fudholi, M. M. Abdul-Majeed, and K. Sopian, “Factors affecting basin type solar still productivity: A detailed review,” Renew. Sustain. Energy Rev., vol. 32, pp. 430–447, 2014.
[77]        A. Shukla, K. Kant, and A. Sharma, “Solar still with latent heat energy storage: A review,” Innov. Food Sci. Emerg. Technol., vol. 41, pp. 34–46, 2017.
[78]         Z. M. Omara, A. S. Abdullah, A. E. Kabeel, and F. A. Essa, “The cooling techniques of the solar stills’ glass covers – A review,” Renew. Sustain. Energy Rev., vol.
78, no. March, pp. 176–193, 2017.
[79]        A. E. Kabeel, T. Arunkumar, D. C. Denkenberger, and R. Sathyamurthy, “Performance enhancement of solar still through efficient heat exchange mechanism – A review,” Appl. Therm. Eng., vol. 114, pp. 815–836, 2017.
[80]        R. Sathyamurthy et al., “A Review of integrating solar collectors to solar still,” Renew. Sustain. Energy Rev., vol. 77, no. November, pp. 1069–1097, 2017.
[81]        A. E. Kabeel, Z. M. Omara, and M. M. Younes, “Techniques used to improve the performance of the stepped solar still-A review,” Renew. Sustain. Energy Rev., vol. 46, pp. 178–188, 2015.
[82]        A. M. Manokar et al., “Inclined solar still designs: A review,” Renew. Sustain. Energy Rev., vol. 54, no. April 2017, pp. 430–447, 2017.
[83]        A. A. El-Sebaii and E. El-Bialy, “Advanced designs of solar desalination systems: A review,” Renew. Sustain. Energy Rev., vol. 49, pp. 1198–1212, 2015.
[84]        A. K. Kaviti, A. Yadav, and A. Shukla, “Inclined solar still designs: A review,” Renew. Sustain. Energy Rev., vol. 54, pp. 429–451, 2016.
[85]        A. M. Manokar, D. P. Winston, A. E. Kabeel, R. Sathyamurthy, and T. Arunkumar, “Different parameter and technique affecting the rate of evaporation on active solar still -a review,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 3, pp. 593–630, 2018.
[86]        K. Selvaraj and A. Natarajan, “Factors influencing the performance and productivity of solar stills - A review,” Desalination, vol. 435, no. September, pp. 181–187,2018.
[87]        V. Manikandan, K. Shanmugasundaram, S. Shanmugan, B. Janarthanan, and J. Chandrasekaran, “Wick type solar stills: A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 322–335, 2013.
[88]        A. Muthu Manokar et al., “Integrated PV/T solar still- A mini-review,” Desalination, vol. 435, no. March, pp. 259–267, 2018.
[89]        Z. M. Omara, A. E. Kabeel, and A. S. Abdullah, “A review of solar still performance with reflectors,” Renew. Sustain. Energy Rev., vol. 68, no. October 2016, pp. 638–649, 2017.