تاثیر فرآیندهای تغییر شکل پلاستیکی شدید بر خاصیت ذخیره‌سازی هیدروژن در هیدریدهای فلزی

نوع مقاله: علمی-ترویجی

نویسندگان

1 علوم و فناوری های نوین دانشگاه اصفهان

2 -مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد،واحد نجف آباد، دانشگاه آزاداسلامی، نجف آباد، ایران

3 گروه مواد دانشکده مواد واحد علوم و تحقیقات

4 دانشجوی دکتری مهندسی مواد،دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر،تهران،ایران

چکیده

افزایش تقاضاى انرژى و کاهش منابع سوخت‌های فسیلى ضرورت دستیابى به انرژی‌های پاک و قابل‌اطمینان را ایجاد کرده است. سیستم‌های انرژى بر پایه‌ی هیدروژن، یکى از راه‌حل‌های جدید در درازمدت به نظر می‌رسد. چالش اصلی این فناورى تهیه‌ی مقدار زیادی هیدروژن از منابع تجدید پذیر است.بعضى از فلزات واسطه و آلیاژهاى آن‌ها در واکنش با گاز هیدروژن یا اتم آن از یک الکترولیت، هیدریدهاى فلزى را ایجاد می‌کنند.واکنش برگشت‌پذیر هیدرید شدن این فلزات و آلیاژهایشان، آنان را به‌عنوان مخزنی برای ذخیره‌ی هیدروژن معرفى می‌کند. نانو، باعث افزایش سرعت فرایند جذب هیدروژن و دفع هیدروژن در فلزات و آلیاژهاى آن‌ها می‌شود.استفاده از آسیاب گلوله‌ای کاربرد وسیعى در جداسازى دانه‌های هیدرید دارد. نانوبلورهاى Mgو Mg2Niکه از آسیاب گلوله‌ای به‌دست‌آمده‌اند، سرعت بیشترى را در جذب هیدروژن نسبت به توده‌ای از این ذرات در دماى نسبتاً پایین نشان داده‌اند؛ زیرا هم اثرات سطح افزایش می‌یابد و هم طول مسیر نفوذ نیز کم می‌شود .

کلیدواژه‌ها


منابع
 
  1. Benjamin, J.S., Volin, T.E.: The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974)
  2. Huot, J., Liang, G., Schulz, R.: Mechanically alloyed metal hydride systems. Appl. Phys. A 72, 187–195 (2001)
  3. Suryanarayana, C.: Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18(3), 203–211 (2008)
  4. Valiev, R.Z., Zehetbauer, M.J., Estrin, Y., Höppel, H.W., Ivanisenko, Y., Hahn, H., Wilde, G.,
    Roven, H.J., Sauvage, X., Langdon, T.G.: The innovation potential of bulk nanostructured materials. Adv. Eng. Mater. 9(7), 527–533 (2007)
  5. Gaffet, E., Harmelin, M., Faudot, F.: Far-from-equilibrium phase transition induced by mechanical alloying in the Cu–Fe system. J. Alloy. Compd. 194(1), 23–30 (1993).
  6. Mine, Y., Tsumagari, T., Horita, Z.: Hydrogen trapping on lattice defects produced by high-pressure torsion in Fe–0.01 mass% C alloy. Scripta Mater. 63(5), 552–555 (2010).
  7. Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1–88 (2004).
  8. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)
  9. Danaie, M., Tao, S.X., Kalisvaart, P., Mitlin, D.: Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta Mater. 58(8), 3162–3172 (2010)
  10. Young, R.A.: The rietveld method. In: Young, R.A. (ed.) IUCr Monographs on Crystallography-5, p. 298. Oxford University Press, Oxford (1993)
  11. Bridgman, P.W.: On torsion combined with compression. J. Appl. Phys. 15(6), 273–283 (1943)
  12. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)
  13. Edalati,K.,Emami,H.,Matsuda,J.,Akiba,E.,Horita,Z.: Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 88, 190–195 (2015).
  14. Dreele, R.B.V.: Rietveld refinement. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)
  15. Cranswick, L.M.D.: Computer software for powder diffraction. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)
  16. Cheary, R.W., Coelho, A.A., Cline, J.P.: Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Nat. Inst. Stand. Technol. 109(1), 1–25 (2004)
  17. Gayle, F.W., Biancaniello, F.S.: Stacking faults and crystallite size in mechanically alloyed
    Cu–Co. Nanostruct. Mater. 6(1–4), 429–432 (1995).
  18. Klassen, T., Herr, U., Averback, R.S.: Ball milling of systems with positive heat of mixing: Effect of temperature in Ag–Cu. Acta Mater. 45(7), 2921–2930 (1997)
  19. Edalati, K., Horita, Z.: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652, 325–352 (2016).
  20. Ebrahimi-Purkani, A., Kashani-Bozorg, S.F.: Nanocrystalline Mg2Ni-based powders produced
    by high-energy ball milling and subsequent annealing. J. Alloy. Compd. 456(1–2), 211–215 (2008).
  21. Vermeulen, P.: Thiel, E.F.M.J.v., Notten, P.H.L.: Ternary MgTiX-alloys: a promising route toward low-temperature, high-capacity, hydrogen-storage materialsthin films. Chem. Eur. J. 13 (35), 9892–9898 (2007)
  22. Rousselot, S., Bichat, M.P., Guay, D., Roué, L.: Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 175(1), 621–624 (2008).
  23. Varin, R.A., Zbroniec, L., Polanski, M., Bystrzycki, J.: A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides. Energies 4(1), 1–25 (2011)
  24. Leiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Kiminami, C.S.,
    Botta, W.J.: Nanoscale grain refinement and H-Sorption properties of MgH2 processed by
    high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 12(8), 786–792 (2010)
  25. Huot, J., Ravnsbæk, D.B., Zhang, J., Cuevas, F., Latroche, M., Jensen, T.R.:
    Mechanochemical synthesis of hydrogen storage materials. Prog. Mater Sci. 58(1), 30–75
    (2013).
  26. Faisal, M., Gupta, A., Shervani, S., Balani, K., Subramaniam, A.: Enhanced hydrogen storage  in accumulative roll bonded Mg-based hybrid. Int. J. Hydrogen Energy 40(35), 11498–11505 (2015). doi:10.1016/j.ijhydene.2015.03.095
  27. Hongo, T., Edalati, K., Iwaoka, H., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: High-pressure torsion of palladium: hydrogen-induced softening and plasticity in ultrafine grains and  hydrogen-induced hardening and embrittlement in coarse grains. Mater. Sci. Eng. A 618, 1–8 (2014). doi:10.1016/j.msea.2014.08.074
  28. Bridgman, P.W.: Effects of high shearing stress combined with high hydrostatic pressure.
    Phys. Rev. 48(10), 825–847 (1935)
  29. Zhilyaev, A.P., Langdon, T.G.: Using high-pressure torsion for metal processing:
    fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)
  30. Hohenwarter, A., Bachmaier, A., Gludovatz, B., Scheriau, S., Pippan, R.: Technical
    parameters affecting grain refinement by high pressure torsion. Int. J. Mater. Res. 100(12),
    1653–1661 (2009).
  31. Sergueeva, A.V., Song, C., Valiev, R.Z., Mukherjee, A.K.: Structure and properties of
    amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing.
    Mater. Sci. Eng. A 339(1–2), 159–165 (2003).
  32. Edalati, K., Matsuda, J., Yanagida, A., Akiba, E., Horita, Z.: Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and  differences. Int. J. Hydrogen Energy 39(28), 15589–15594 (2014). doi:10.1016/j.ijhydene. 2014.07.124
  33. Bonarski, B.J., Schafler, E., Mingler, B., Skrotzki, W., Mikulowski, B., Zehetbauer, M.J.:
    Texture evolution of Mg during high-pressure torsion. J. Mater. Sci. 43(23–24), 7513–7518
    (2008).
  34. Kusadome, Y., Ikeda, K., Nakamori, Y., Orimo, S., Horita, Z.: Hydrogen storage capability of
    MgNi2 processed by high pressure torsion. Scr. Mater. 57(8), 751–753 (2007)
  35. Révész, Á., Kánya, Z., Verebélyi, T., Szabó, P.J., Zhilyaev, A.P., Spassov, T.: The effect of
    high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled
    Mg70Ni30. J. Alloy. Compd. 504(1), 83–88 (2010)
  36. Skripnyuk, V., Rabkin, E., Estrin, Y., Lapovok, R.: The effect of ball milling and equal
    channel angular pressing on hydrogen absorption/desorption properties of Mg-4.95 wt%
    Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 52(2), 405–414 (2004)
  37. Révész, Á., Kis-Tóth, Á., Varga, L.K., Schafler, E., Bakonyi, I., Spassov, T.: Hydrogen
    storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion.
    Int. J. Hydrogen Energy 37(7), 5769–5776 (2012).
  38. Hongo, T., Edalati, K., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: Significance of grain
    boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics
    processed by high-pressure torsion. Acta Mater. 92, 46–54 (2015)
  39. Huot, J., Swainson, I., Schulz, R.: Phase transformation in magnesium hydride induced by ball
    milling. Ann. Chim. Sci. Mat. 31(1), 135–144 (2006)
  40. Krystian, M., Setman, D., Mingler, B., Krexner, G., Zehetbauer, M.J.: Formation of
    superabundant vacancies in nano-Pd–H generated by high-pressure torsion. Scr. Mater. 62(1),
    49–52 (2010).
  41. Skripnyuk, V., Buchman, E., Rabkin, E., Estrin, Y., Popov, M., Jorgensen, S.: The effect of
    equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy.
    J. Alloy. Compd. 436, 99–106 (2007)
  42. Lima, G.F., Jorge, A.M., Leiva, D.R., Kiminami, C.S., Bolfarini, C., Botta, W.J.: Severe
    plastic deformation of Mg-Fe powders to produce bulk hydrides—art. no. 012015. In: Schultz,
    L., Eckert, J., Battezzati, L., Stoica, M. (eds.) 13th International Conference on Rapidly
    Quenched and Metastable Materials, vol. 144. Journal of Physics Conference Series,
    pp. 12015–12015. Iop Publishing Ltd, Bristol (2009)
  43. Løken, S., Solberg, J.K., Maehlen, J.P., Denys, R.V., Lototsky, M.V., Tarasov, B.P., Yartys,
    V.A.: Nanostructured Mg–Mm–Ni hydrogen storage alloy: Structure-properties
    relationship. J. Alloy. Compd. 446–447, 114–120 (2007)
  44. Jorge Jr, A.M., Prokofiev, E., Ferreira de Lima, G., Rauch, E., Veron, M., Botta, W.J.,
    Kawasaki, M., Langdon, T.G.: An investigation of hydrogen storage in a magnesium-based
    alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 38(20), 8306–
    8312 (2013).
 
  1. Skripnyuk, V.M., Rabkin, E., Bendersky, L.A., Magrez, A., Carreño-Morelli, E., Estrin, Y.:
    Hydrogen storage properties of as-synthesized and severely deformed magnesium—multiwall
    carbon nanotubes composite. Int. J. Hydrogen Energy 35(11), 5471–5478 (2010)
  2. Bonisch, M., Zehetbauer, M.J., Krystian, M., Setman, D., Krexner, G.: Stabilization of lattice
    defects in HPT-deformed palladium hydride. In: Wang, J.T., Figueiredo, R.B., Langdon, T.G.
    (eds.) Nanomaterials by Severe Plastic Deformation: Nanospd5, Pts 1 and 2, vol. 667–669.
    Materials Science Forum, pp. 427–432. (2011)
  3. Hongo, T., Edalati, K., Iwaoka, H., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: High-pressure
    torsion of palladium: hydrogen-induced softening and plasticity in ultrafine grains and
    hydrogen-induced hardening and embrittlement in coarse grains. Mater. Sci. Eng. A 618, 1–8
    (2014).
  4. Fleck, N.A., Johnson, K.L., Mear, M.E., Zhang, L.C.: Cold-rolling of foil. Proc. Inst. Mech.
    Eng. Part B-J. Eng. Manufact. 206(2), 119–131 (1992).
  5. Lee, S.H., Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T.: Role of shear strain in ultragrain
    refinement by accumulative roll-bonding (ARB) process. Scr. Mater. 46(4), 281–285 (2002).
  6. Nishimura, C., Komaki, M., Hwang, S., Amano, M.: V-Ni alloy membranes for hydrogen
    purification. J. Alloy. Compd. 330, 902–906 (2002).
  7. Chung, H.S., Lee, J.-Y.: Hydriding and dehydriding reaction rate of FeTi intermetallic
    compound. Int. J. Hydrogen Energy 10(7–8), 537–542 (1985).
  8. Zhang, H., Huang, G., Wang, L., Roven, H.J., Pan, F.: Enhanced mechanical properties of
    AZ31 magnesium alloy sheets processed by three-directional rolling. J. Alloy. Compd. 575,
    408–413 (2013)
  9. Trudeau, M.L., Dignard-Bailey, L., Schulz, R., Tessier, P., Zaluski, L., Ryan, D.H.,
    Strom-Olsen, J.O.: The oxidation of nanocrystalline FeTi hydrogen storage compounds.
    Nanostruct. Mater. 1, 457–464 (1992)
  10. Couillaud, S., Enoki, H., Amira, S., Bobet, J.L., Akiba, E., Huot, J.: Effect of ball milling andcold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J. Alloy.Compd. 484(1–2), 154–158 (2009).
  11. Valiev, R., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool
    for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)
  12. Langdon, T.G.: The characteristic of grain refinement in materials processed by severe plastic
    deformation. Rev. Adv. Mater. Sci. 13(1), 6–14 (2006)
  13. Ueda, T.T., Tsukahara, M., Kamiya, Y., Kikuchi, S.: Preparation and hydrogen storage properties of Mg-Ni-Mg2Ni laminate composites. J. Alloy. Compd. 386, 253–257 (2005)
  14. Pedneault, S., Roué, L., Huot, J.: Synthesis of metal hydrides by cold rolling. Mater. Sci.Forum 570, 33–38 (2008)       
  15. Suganuma, K., Miyamura, H., Kikuchi, S., Takeichi, N., Tanaka, K., Tanaka, H., Kuriyama,N., Ueda, T.T., Tsukahara, M.: Hydrogen storage properties of Mg-Al alloy prepared by superlamination technique. Adv. Mater. Res. 26–28, 857–860 (2007)
  16. Takeichi, N., Tanaka, K., Tanaka, H., Ueda, T.T., Kamiya, Y., Tsukahara, M., Miyamura, H.,Kikuchi, S.: The hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure. J. Alloy. Compd. 446–447, 543–548 (2007)    
  17. Dufour, J., Huot, J.: Study of Mg6Pd alloy synthesized by cold rolling. J. Alloy. Compd.446–447, 147–151 (2007) 
  18. Danaie, M., Mauer, C., Mitlin, D., Huot, J.: Hydrogen storage in bulk Mg-Ti and Mg-stainless
steel multilayer composites synthesized via accumulative roll-bonding (ARB). Int.J. Hydrogen Energy 36(4), 3022–3036 (2011).
  1. Amira, S., Huot, J.: Effect of cold rolling on hydrogen sorption properties of die-cast and as-cast magnesium alloys. J. Alloy. Compd. 520, 287–294 (2012).
  2. Langdon, T.G.: The principles of grain refinement in equal-channel angular pressing. Mater.
    Sci. Eng. A 462(1–2), 3–11 (2007).
  3. Jorge Jr, A.M., Ferreira de Lima, G., Martins Triques, M.R., Botta, W.J., Kiminami, C.S.,Nogueira, R.P., Yavari, A.R., Langdon, T.G.: Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int.
                  J. Hydrogen Energy 39(8), 3810–3821 (2014).
  1.   Leiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Kiminami, C.S., Botta, W.J.: Nanoscale grain refinement and H-Sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 12(8), 786–792 (2010)
  2. Krystian, M., Zehetbauer, M.J., Kropik, H., Mingler, B., Krexner, G.: Hydrogen storage
    properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular
    pressing. J. Alloy. Compd. 509(Supplement 1), S449–S455 (2011).
  3. Floriano, R., Leiva, D.R., Deledda, S., Hauback, B.C., Botta, W.J.: Cold rolling of MgH2 powders containing different additives. Int. J. Hydrogen Energy 38(36), 16193–16198 (2013).
  4. Révész, Á., Gajdics, M., Varga, L.K., Krállics, G., Péter, L., Spassov, T.: Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling.Int. J. Hydrogen Energy 39(18), 9911–9917 (2014).