بررسی ترمودینامیکی هیدرات های گازی تشکیل شده در حضور گازهای تبریدی

نوع مقاله: علمی-ترویجی

نویسنده

گروه مهندسی شیمی، دانشگاه بجنورد، ایران

چکیده

هیدرات های گازی تکنولوژی جدیدی برای ذخیره سازی سرما هستند. این ترکیبات میزان ذخیره سازی بالایی داشته و دمای تغییر فازشان نسبت به آب بالاتر است پایداری سیکل حرارتی و خواص انتقال حرارتی هیدرات های گازی در مقایسه با نمک های اوتکتیک بهتر بوده که باعث می شود استفاده از این ترکیبات به عنوان ابزاری برای ذخیره سازی سرما در سیستم های تهویه مطبوع توجیه قابل توجهی داشته باشد. در کار حاضر هیدرات های تشکیل شده در حضور گازهای تبریدی به عنوان ابزاری مناسب برای ذخیره سازی سرما معرفی می شود. داده های تعادلی بهترین گازهای تبریدی اندازه گیری شده توسط محققین در این تحقیق آورده شده است و فشار تعادلی هیدرات تشکیل شده در حضور گازهای تبریدی مختلف بررسی و مقایسه شده اند. همچنین روش های مختلف سرمایش پایه هیدرات توسعه داده شده توسط پژوهشگران مختلف بررسی می‌شود و نقاط ضعف و قوت هر یک از این روش های سرمایش توضیح داده شد.

کلیدواژه‌ها


1-       مراجع
 
[1] D. Sloan, Natural Gas Hydrates in Flow Assurance, Gulf Professional Publishing, Boston, 2011, pp. 1-11.
[2] J.E.D. Sloan, K.A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. ed., CRC Press, Taylor & Francis Group2008.
[3] X. Wang, M. Dennis, L. Hou, Clathrate hydrate technology for cold storage in air conditioning systems, Renewable and Sustainable Energy Reviews 36 (2014) 34-51.
[4] Y. Higashi, Critical parameters for HFC134a, HFC32 and HFC125, International Journal of Refrigeration 17 (1994) 524-531.
[5] S. Hashimoto, T. Makino, Y. Inoue, K. Ohgaki, Three-Phase Equilibrium Relations and Hydrate Dissociation Enthalpies for Hydrofluorocarbon Hydrate Systems: HFC-134a, -125, and -143a Hydrates, Journal of Chemical & Engineering Data 55 (2010) 4951-4955.
[6] X. Wang, M. Dennis, An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications, Chemical Engineering Science 137 (2015) 938-946.
[7] X. Wang, M. Dennis, Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications, Applied energy 167 (2016) 59-69.
[8] X. Wang, M. Dennis, Phase equilibrium and formation behaviour of CO2-TBAB semi-clathrate hydrate at low pressures for cold storage air conditioning applications, Chemical Engineering Science 155 (2016) 294-305.
[9] T. Akiya, T. Shimazaki, M. Oowa, M. Nakaiwa, T. Nakane, T. Hakuta, M. Matsuo, Y. Yoshida, Phase equilibria of some alternative refrigerants hydrates and their mixtures using for cool storage materials,  Energy Conversion Engineering Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety, IEEE, 1997, pp. 1652-1655.
[10] M. Kobayashi, H. Nishiumi, Vapor–liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a, Fluid phase equilibria 144 (1998) 191-202.
[11] C. Jinggui, F. Shuanshi, L. Deqing, Progress of cool storage technology with gas hydrate, Chemical Industry and Engineering Progress 22 (2003) 942-946.
[12] L.G.X.Y.L. Daoping, New Type Gas Hydrate Cool-storage Media [J], Journal of Refrigeration 3 (2008) 004.
[13] J.S. Lim, J.-Y. Park, B.-G. Lee, Y.-W. Lee, Phase equilibria of 1,1,1-trifluoroethane (HFC-143a) + 1,1,1,2-tetrafluoroethane (HFC-134a), and + 1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, and 313.15 K, Fluid Phase Equilibria 193 (2002) 29-39.
[14] J.Y. Park, J.S. Lim, B.G. Lee, High pressure vapor-liquid equilibria of binary mixtures composed of HFC-32, 125, 134a, 143a, 152a, 227ea and R600a (isobutane), Fluid phase equilibria 194 (2002) 981-993.
[15] J. Lim, J.-Y. Park, B.-G. Lee, Vapor–liquid equilibria of CFC alternative refrigerant mixtures: trifluoromethane (HFC-23)+ difluoromethane (HFC-32), trifluoromethane (HFC-23)+ pentafluoroethane (HFC-125), and pentafluoroethane (HFC-125)+ 1, 1-difluoroethane (HFC-152a), International journal of thermophysics 21 (2000) 1339-1349.
[16] G. Li, Y. Hwang, R. Radermacher, Review of cold storage materials for air conditioning application, International journal of refrigeration 35 (2012) 2053-2077.
[17] N. Liu, X. Wang, J. Li, Experimental investigation on heat transfer of R152a during condensation in a circular microchannel, Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys 34 (2013) 517-521.
[18] Y. Uchida, M. Yasumoto, Y. Yamada, K. Ochi, T. Furuya, K. Otake, Critical Properties of Four HFE + HFC Binary Systems:  Trifluoromethoxymethane (HFE-143m) + Pentafluoroethane (HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + 1,1,1,2,3,3-Hexafluoropropane (HFC-236ea), Journal of Chemical & Engineering Data 49 (2004) 1615-1621.
[19] T. Gierczak, R.K. Talukdar, J.B. Burkholder, R. Portmann, J. Daniel, S. Solomon, A. Ravishankara, Atmospheric fate and greenhouse warming potentials of HFC 236fa and HFC 236ea, Journal of Geophysical Research: Atmospheres 101 (1996) 12905-12911.
[20] H. Lin, Y.-Y. Duan, Z.-W. Wang, Surface tension measurements of 1, 1, 1, 3, 3-pentafluoropropane (HFC-245fa) and 1, 1, 1, 3, 3, 3-hexafluoropropane (HFC-236fa) from 254 to 333 K, Fluid phase equilibria 214 (2003) 79-86.
[21] L. Zipfel, W. Krucke, K. Borner, P. Barthtlemy, P. Dournel, HFC-365mfc and HFC-245fa progress in application of new HFC blowing agents, Journal of cellular plastics 34 (1998) 511-525.
[22] N. Li, X. Zhang, H. Bai, X.-j. LI, X.-r. ZHANG, Y.-x. MA, J.-f. WANG, D.-q. CANG, The study on thermal performance of power generation system using organic Rankine cycle and reheating cycle system [J], Industrial Heating 2 (2012) 017.
[23] S. Bobbo, M. Scattolini, L. Fedele, R. Camporese, Compressed liquid densities and saturated liquid densities of HFC-365mfc, Fluid phase equilibria 222 (2004) 291-296.
[24] J.-Y. Park, J. Lim, B.-G. Lee, Y.-W. Lee, Phase Equilibria of CFC Alternative Refrigerant Mixtures: 1, 1, 1, 2, 3, 3, 3-Heptafluoropropane (HFC-227ea)+ Difluoromethane (HFC-32),+ 1, 1, 1, 2-Tetrafluoroethane (HFC-134a), and+ 1, 1-Difluoroethane (HFC-152a), International journal of thermophysics 22 (2001) 901-917.
[25] M. Lisal, V. Vacek, Effective potentials for liquid simulation of the alternative refrigerants HFC-32: CH2F2 and HFC-23: CHF3, Fluid phase equilibria 118 (1996) 61-76.
[26] J.S. Lim, G. Seong, H.-K. Roh, B.G. Lee, Vapor− Liquid Equilibria for Propane (R-290)+ 1, 1, 1, 2, 3, 3, 3-Heptafluoropropane (HFC-227ea) at Various Temperatures, Journal of Chemical & Engineering Data 52 (2007) 2250-2256.
[27] K. Guo, B. Shu, Y. Zhang, Y. Zhao, Phase-equilibrium properly of HFC134a/HCFC141b mixed gas hydrate, J Eng Thermophys 19 (1998) 480-483.
[28] H. Wang, J. Sun, L. Fu, C. LU, Performance of HFC32/HFC143a/HFC134a as a Substitute for HCFC22 in Air-Conditioning & Direct Cool Storage Cycle, JOURNAL OF ENGINEERING THERMOPHYSICS 21 (2000) 155-159.
[29] D. Liang, The Thermodynamic Study on the Phase Equilibrium of New-type Cool Storage Media, Refrigerant Gas Hydrates, Shanghai: Shanghai Jiaotong University 87 (2001).
[30] H. Hashemi, S. Babaee, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, State of the art and kinetics of refrigerant hydrate formation, International Journal of Refrigeration 98 (2019) 410-427.
[31] D. Liang, R. Wang, K. Guo, S. Fan, Prediction of refrigerant gas hydrates formation conditions, Journal of Thermal Science 10 (2001) 64-68.
[32] D. Liang, K. Guo, R. Wang, S. Fan, Hydrate equilibrium data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a), Fluid Phase Equilibria 187 (2001) 61-70.
[33] A.H. Mohammadi, D. Richon, Pressure–temperature phase diagrams of clathrate hydrates of HFC-134a, HFC-152a and HFC-32,  AIChE Annual Meeting, 2010.
[34] T. Akiya, T. Shimazaki, M. Oowa, M. Matsuo, Y. Yoshida, Formation conditions of clathrates between HFC alternative refrigerants and water, International journal of thermophysics 20 (1999) 1753-1763.
[35] S. Hashimoto, H. Miyauchi, Y. Inoue, K. Ohgaki, Thermodynamic and Raman spectroscopic studies on difluoromethane (HFC-32)+ water binary system, Journal of Chemical & Engineering Data 55 (2010) 2764-2768.
[36] J.J. Carbajo, A direct-contact-charged direct-contact-discharged cool storage system using gas hydrate, ASHRAE Trans.;(United States) 91 (1985).
[37] M. Najafi, Cooling and heating with clathrate thermal energy storage system, University of Alabama, 1989.
[38] W. Schaetzle, M. Gadalla, H. Najafi, Experimental results of cooling cycles with clathrate energy storage,  22nd Intersociety Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics, 1987, pp. 9375.
[39] M. Ternes, Characterization of refrigerant-12 gas hydrate formation for heat pump cool storage applications, Am. Soc. Mech. Eng.,(Pap.);(United States) 84 (1984).
[40] J. Carbajo, Mixed clathrates for cool storage applications, NASA STI/Recon Technical Report N 86 (1985).
[41] T. Tanii, M. Minemoto, K. Nakazawa, Y. Ando, Study on a cool storage system using HCFC (Hydro‐Chloro‐Fluoro‐Carbon)‐141B (CCI2 FCH3)(1, 1‐dichloro‐1‐fluoro‐ethane) clathrate, The Canadian Journal of Chemical Engineering 75 (1997) 353-361.
[42] Y. Bi, T. Guo, T. Zhu, L. Zhang, L. Chen, Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system, Energy conversion and management 47 (2006) 2974-2982.
[43] Y. Bi, T. Guo, L. Zhang, H. Zhang, L. Chen, Experimental study on cool release process of gas-hydrate with additives, Energy and Buildings 41 (2009) 120-124.
[44] X. Yingming, L. Deqing, G. Kaihua, Advance of gas hydrate cool storage technology, Heat. Vent. Air Cond 34 (2004) 25-28.
[45] S. Jerbi, A. Delahaye, J. Oignet, L. Fournaison, P. Haberschill, Rheological properties of CO2 hydrate slurry produced in a stirred tank reactor and a secondary refrigeration loop, International Journal of Refrigeration 36 (2013) 1294-1301.
[46] Z. Youssef, A. Delahaye, L. Huang, F. Trinquet, L. Fournaison, C. Pollerberg, C. Doetsch, State of the art on phase change material slurries, Energy Conversion and Management 65 (2013) 120-132.