رصد فناوری توربین های آبی با تمرکز بر توربین فرانسیس

نوع مقاله : مقاله ترویجی

نویسنده

گروه پژوهشی تجهیزات دوار مکانیکی، پژوهشگاه نیرو، تهران، ایران

چکیده

در حال حاضر نیروگاه‌های برق آبی یکی از به صرفه‌ترین روش‌های تولید برق بوده و بیشترین سهم را در تولید جهانی برق تجدیدپذیر دارند. به دلیل سابقه طولانی استفاده از توربین آبی در تولید برق، حوزه‌های فناورانه مرتبط با آن در سطح بالایی از بلوغ قرار دارند. ولی با این حال همچنان تحقیقات متعددی به منظور افزایش راندمان، افزایش انعطاف پذیری در عملکرد، افزایش عمر و کاهش هزینه‌های نصب، بهره‌برداری و نگهداری توربین‌های آبی در جریان است. در این پژوهش مقالات و اختراعات مرتبط با فناوری توربین‌های آبی پیمایش شده و بر اساس آن حوزه‌های فناورانه‌ای که در پژوهش‌های اخیر مورد تمرکز واقع شده‌اند، شناسایی گردیده است. با توجه به کاربرد گسترده توربین فرانسیس در تولید برق آبی به ویژه در کشور ایران، پیمایش صورت گرفته عمدتاً مربوط به این نوع توربین می‌باشد. بر این اساس حوزه‌های فناورانه توربین فرانسیس شامل مباحث مرتبط با گردابه و جریان در لوله رانش، پره‌ها، کاویتاسیون، محفظه حلزونی، دینامیک سیالات محاسباتی و ساخت و تولید می‌باشد. همچنین فناوری‌های مرتبط با افزایش محدوده عملکرد توربین آبی و نیز دیجیتالی‌سازی عملکرد توربین آبی مهمترین فناوری‌های در حال رشد در رابطه با برق آبی هستند.

کلیدواژه‌ها

موضوعات


- مراجع
[1] P. L. Viollet, From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions, Comptes Rendus Mécanique, Vol. 345, No. 8, pp. 570-580, 2017.‏  
[2]  British Petroleum Company, Statistical review of world energy, London, 2021.
[3]  Britannica. Three Gorges Dam, Accessed 18 November 2021; https://www.britannica.com/topic/Three-Gorges-Dam.
[4]  International Renewable Energy Agency, Renewable capaciyy statistics 2021, Abu Dhabi, 2021.
[5]  S. A. Nourbakhsh, Turbomachines, Tehran: University of Tehran Press, 2008. (in Persian)
[6]  Voith. Application range and development of our turbines, Accessed 18 November 2021; https://voith.com/hu-hu/products-services/hydropower-components/turbines.html.
[7]  A. Kumar. Francis turbine: Definition, construction or parts, working principle, efficiency, advantages, application, Accessed 18 November 2021; https://themechanicalengineering.com/francis-turbine/.
[8]  Bonyad Tosee Farda, Methods of technology foresight, Tehran, 2005. (in Persian)
[9]  Microsoft Academic, Accessed 18 November 2021; https://academic.microsoft.com/home.
[10] Patent Inspiration, Accessed 18 November 2021; https://www.patentinspiration.com/.
[11] M. Escudier, Confined vortices in flow machinery, Annual Review of Fluid Mechanics, Vol. 19, No. 1, pp. 27-52, 1987.‏
[12] F. Avellan, Flow investigation in a Francis draft tube: the FLINDT project, In Proceedings of the 20th IAHR Symposium, Charlotte, North Carolina, USA, International Association For Hydraulic Research, pp. 1-18, 2000.‏
[13] R. Susan-Resiga, G. Dan Ciocan, I. Anton, F. Avellan, Analysis of the swirling flow downstream a Francis turbine runner, Journal of Fluids Engineering, Vol. 128, No. 1, pp. 177-189, 2006.
[14] E. Georgievskaia, Analytical system for predicting cracks in hydraulic turbines, Engineering Failure Analysis, Vol. 127, pp. 1-10, 2021.
[15] R. A. Saeed, A. N. Galybin, V. Popov, Modelling of flow-induced stresses in a Francis turbine runner, Advances in Engineering Software, Vol. 41, No. 12, pp. 1245-1255, 2010.‏
[16] P. Kumar, R. P. Saini, Study of cavitation in hydro turbines - A review, Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, pp. 374-383, 2010.‏
[17] X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, M. Coussirat, Detection of cavitation in hydraulic turbines, Mechanical systems and signal processing, Vol. 20, No. 4, pp. 983-1007, 2006.
[18] M. Szkodo, Effect of laser heating on cavitation behavior of Fe–Cr–Mn coating, Advances in Materials Science, Vol. 1, No. 5, 2004.‏
[19] T. Aschenbrenner, A. Otto, W. Moser, Classification of vortex and cavitation phenomena and assessment of CFD prediction capabilities, in proceedings of the 23nd IAHR Symppsium on hydraulic machinery and systems, 2006.
[20] T. Guo, J. Zhang, Z. Luo, Analysis of Channel Vortex and Cavitation Performance of the Francis Turbine under Partial Flow Conditions, Processes, Vol. 9, No. 8, pp. 1-16, 2021.
[21] L. Sun, P. Guo, X. Luo, Numerical investigation of inter-blade cavitation vortex for a Francis turbine at part load conditions, IET Renewable Power Generation, Vol. 15, No. 6, pp. 1163-1177, 2021.
[22] P. J. Gogstad, Hydraulic design of Francis turbine exposed to sediment erosion, MSc Thesis, Norwegian University of Science and Technology, Trondheim, 2012.
[23] H. Keck, M. Sick, Thirty years of numerical flow simulation in hydraulic turbomachines, Acta mechanica, Vol. 201, No. 1, pp. 211-229, 2008.‏
[24] J. Meyers, B.  Geurts, P. Sagaut, Quality and reliability of large-eddy simulations, Berlin: Springer Science & Business Media, 2008.
[25] P. Mössinger, R. Jester-Zürker, A. Jung, Investigation of different simulation approaches on a high-head Francis turbine and comparison with model test data: Francis-99, in Journal of Physics: Conference Series, IOP Publishing, 2015.
[26] J. Paik, F. Sotiropoulos, M. J. Sale, Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models, Journal of hydraulic engineering, Vol. 131, No. 6, pp. 441-456, 2005.‏
[27] V. Hidalgo, M. Velasco, E. Cando, E. Valencia, S. Simbaña, D. Puga, C. Mora, X. Escaler, Rotatory 3D structured mesh study using openFOAM to simulate the flow in francis turbine, Materials Today: Proceedings, Vol. 49, pp. 142-148, 2022.
[28] W. T. Su, X. B. Li, F. C. Li, W. F. Han, X. Z. Wei, J. Guo, Large eddy simulation of pressure fluctuations at off-design condition in a Francis turbine based on cavitation model. in Materials Science and Engineering: Conference Series, IOP Publishing, pp. 22-32, 2013.‏
[29] C. Trivedi, M. J. Cervantes, O. G. Dahlhaug, Numerical techniques applied to hydraulic turbines: A perspective review,  Applied Mechanics Reviews, Vol. 68, No. 1, pp. 1-18, 2016.‏
[30] A. Kafle, P. L. Shrestha, S. Chitrakar, B. Thapa, B. S. Thapa, N. Sharma, A review on casting technology with the prospects on its application for hydro turbines, in Journal of Physics: Conference Series, IOP Publishing, pp. 1-11, 2020.
[31] M. Nishi, S. Liu, An outlook on the draft-tube-surge study, International Journal of Fluid Machinery and Systems, Vol. 6, No. 1, pp. 33-48, 2013.‏
[32] S. Muntean, A. I. Bosioc, R. A. Szakal, L. Vékás, R. F. Susan-Resiga, Hydrodynamic investigations in a swirl generator using a magneto-rheological brake, Materials Design and Applications, Vol. 65, No. 1, pp. 209-218, 2017.‏
[33] X. Zhou, C. Shi, K. Miyagawa, H. Wu, Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine, Renewable Energy, Vol. 172, pp. 606-617, 2021.
[34] D. S. Semerci, T. Yavuz, Controlling Flow in Draft Tube of Francis Turbine by Vortex Preventing Element, Journal of Electrical Power & Energy Systems, Vol. 6, No. 1, pp. 34-43, 2022.
[35] L. Zhu, R. Z. Zhang, A. Yu, L. Lu, X. W. Luo, Suppression of vortex rope oscillation and pressure vibrations in Francis turbine draft tube using various strategies, Journal of Hydrodynamics, Vol. 33, No. 3, pp. 534-545, 2021.
[36] I. Kougias, G. Aggidis, F. Avellan, S. Deniz, U. Lundin, A. Moro, S. Muntean, D. Novara, J. I. Pérez-Díaz, E. Quaranta, P. Schild, N. Theodossiou, Analysis of emerging technologies in the hydropower sector, Renewable and Sustainable Energy Reviews, Vol. 113, No. 1, pp. 1-18, 2019.
[37] B. Nennemann, J. F. Morissette, J. Chamberland-Lauzon, C. Monette, O. Braun, M. Melot, A. Coutu, J. Nicolle, A. M. Giroux, Challenges in dynamic pressure and stress predictions at no-load operation in hydraulic turbines, in Earth and Environmental Science: Conference Series, IOP Publishing, pp. 32-55, 2014.‏
[38] M. Egusquiza, E. Egusquiza, C. Valero, A. Presas, D. Valentín, M. Bossio, Advanced condition monitoring of Pelton turbines, Measurement, Vol. 119, pp. 46-55, 2018.‏
[39] S. Cassano, F. Sossan, Model predictive control for a medium-head hydropower plant hybridized with battery energy storage to reduce penstock fatigue, Electric Power Systems Research, Vol. 213, pp. 1-7, 2022.
[40] J. Vinod, B. K. Sarkar, D. Sanyal, Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers, Renewable Energy, Vol. 201, pp. 87-99, 2022.
[41] K. Kumar, R. P. Saini, Data-driven internet of things and cloud computing enabled hydropower plant monitoring system, Sustainable Computing: Informatics and Systems, Vol. 36, pp. 1-13, 2022.