مروری بر نوآوری‎های بالقوه فرآیند تولید بیوگاز

نوع مقاله : مقاله ترویجی

نویسندگان

1 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری انرژی‏های تجدیدپذیر، مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

10.52547/jrenew.10.2.206

چکیده

با افزایش مصرف انرژی و تولید ضایعات ناشی از فعالیت‎های انسانی، هضم بی هوازی، فناوری که زباله ها را به انرژی زیستی تبدیل می‏کند، بیش از پیش در جهان مورد توجه قرار گرفته است. بیوگاز انرژی‌ای تجدید پذیر، پاک و نسبتاً بالغ است، اما هنوز هم بیشتر نیروگاه‏های تجاری بیوگاز نیازمند مشوق‏های مالی فراوانی هستند. علاوه بر این کمبود مواد قابل هضم بسیار ارزان محلی باعث کاهش بهره‌وری بیوگاز، بویژه برای نیروگاه‏های بزرگ بیوگازی (بزرگ‌تر از 1 مگاوات) می‏شود. بنابراین نوآوری‎هایی که بتواند هزینه بهره‎وری و مقرون به صرفه بودن منابع فن‏آوری انرژی بیوگاز را بهبود بخشد، مورد نیاز است. در طی چند سال گذشته تعدادی از فرآیندهای بالقوه نوآورانه برای تکنولوژی بیوگاز پیشنهاد و مورد بررسی قرار گرفته است. با این حال، اکثر این مفاهیم نوین بر روی توسعه تکنولوژی تأثیر کمی داشته است. بنابراین مرور گزارش‌هایی که مرتباً مقایسه، تحلیل و ارزیابی مناسب بودن این روش‌های در حال ظهور را با تأکید بر برتری تکنولوژیکی و پتانسیل تجاری سازی واقعی انجام می‎دهد مورد نیاز است. در این مقاله آخرین نوآوری‏ها، اختراعات و مقاله‏هایی در رابطه با تولید بیوگاز بررسی شده است و سعی شده تا حدی روش‏های انتخاب شده تحلیل شود و محدودیت‌ها و دورنمای آن‏ها بررسی شود. همچنین با مشخص کردن نیازهای تحقیقاتی آینده ایده‏هایی را برای نوآوری‏های جدید ارائه دهد.

کلیدواژه‌ها

موضوعات


[1]  W.M. Budzianowski, Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, pp. 342-349, 2012
[2] W.M. Budzianowskiand, and D.A. Budzianowska, Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations. Energy, Vol. 88, pp. 658-666, 2015.
[3]  M.M. Maghanaki, B. Ghobadian, G. Najafi, R.J. Galogah, Potential of biogas production in Iran. Renewable and sustainable energy reviews, Vol. 28, pp.702-714. 2013.
[4] M. Saeedi Nicheran, Biogas biofuel production. Bi-Quarterly Journal of Renewable and New Energy, Vol. 2, No. 1, pp. 41-46, 2015. (in Persian) 80
[5] W.M. Budzianowski, A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and sustainable energy reviews, Vol. 54, pp.1148-1171 2016.
[6] Y.P. Zhang, Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of industrial microbiology and biotechnology, Vol. 35, No. 5, pp. 367-375, 2008.
[7] Y. Zheng, J. Zhao, F. Xu, and Y. Li, Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science, Vol. 42, pp. 35-53, 2014.
[8] M.J. Taherzadeh and K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, Vol. 9, No. 9, pp.1621-1651, 2008.
[9] Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, Vol. 83, No. 1, pp. 1-11, 2002.
[10]A.T.W.M. Hendriks and G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, Vol. 100, No. 1, pp.10-18, 2009.
[11]C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, Coordinated development of leading biomass pretreatment technologies. Bioresource technology, Vol. 96, No. 18, pp. 1959-1966, 2005.
[12]H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenes, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of hazardous materials, Vol. 183, No. 1-3, pp.1-15, 2010.
[13]Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, X. Zhou, Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment. Industrial Crops and Products, Vol. 144, p.111985, 2020.
[14]M. Sabeeh, R. Liaquat, A. Maryam, Effect of alkaline and alkaline-photocatalytic pretreatment on characteristics and biogas production of rice straw. Bioresource Technology, Vol. 309, p.123449, 2020.
[15]R. Rafique, T.G. Poulsen, A.S. Nizami, J.D. Murphy, G. Kiely, Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy, Vol. 35, No 12, pp. 4556-4561, 2010.
[16]J. Dach, P. Boniecki, J. Przybył, D. Janczak, A. Lewicki, W. Czekała, K. Witaszek, P.C.R. Carmona, M., Cieślik, Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation. Energy, Vol. 69, pp. 34-38, 2014.
[17]M. Krishania, V.K. Vijay, and R. Chandra, Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy, Vol. 57, pp. 359-367, 2013.
[18]A. Cesaro, S. Velten, V. Belgiorno, K. Kuchta, Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production. Journal of cleaner production, Vol. 74, pp. 119-124, 2014.
[19]S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli, Ultrasonic pretreatment of sludge: a review. Ultrasonics sonochemistry, Vol. 18, No. 1, pp. 1-18, 2011.
[20]B. Yu, J. Xu, H. Yuan, Z. Lou, J. Lin, N. Zhu, Enhancement of anaerobic digestion of waste activated sludge by electrochemical pretreatment. Fuel, Vol. 130, pp. 279-285, 2014.
[21]S. Tedesco, T.M. Barroso, and A.G. Olabi, Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renewable Energy, Vol. 62, pp. 527-534, 2014.
[22]A.A. Turkin, M. Dutka, D. Vainchtein, S. Gersen, V.M. van Essen, P. Visser, A.V. Mokhov, H.B. Levinsky, J.T.M. De Hosson, Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas. Applied Energy, Vol. 113, pp. 1141-1148, 2014.
[23]K. Oshita, K. Omori, M. Takaoka, T. Mizuno, Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energy conversion and management, Vol. 81, pp.290-297, 2014.
[24]L.F. Montgomery and G. Bochmann, Pretreatment of feedstock for enhanced biogas production, pp. 1-20, Ireland: IEA Bioenergy, 2014.
[25]P.M. Christy, L.R. Gopinath, and D. Divya, A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, Vol. 34, pp. 167-173, 2014.
[26]M. Kazda, S. Langer, and F.R. Bengelsdorf, Fungi open new possibilities for anaerobic fermentation of organic residues. Energy, Sustainability and Society, Vol. 4, No. 1, pp. 1-9, 2014.
[27]T. Weide, C.D. Baquero, M. Schomaker, E. Brügging, C. Wetter, Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure). Biomass and Bioenergy, Vol. 132, p. 105442, 2020.
[28]G. Piechota and R. Buczkowski, Development of chromatographic methods by using direct-sampling procedure for the quantification of cyclic and linear volatile methylsiloxanes in biogas as perspective for application in online systems. International Journal of Environmental Analytical Chemistry, Vol. 94, No. 8, pp. 837-851, 2014.
[29]A. Amirkhani, M. Azizi Jalilian, R. Amini, A. Amirkhani, K. Ashtari, F. Azizi Jalilian, Design and construction of a semi-automatic green biogas and fertilizer producer. Scientific Journal of Ilam University of Medical Sciences, Vol. 22, No. 2, pp. 10-16, 2014.(in persian)
[30]L. Awhangbo, R. Bendoula, J.M. Roger, F. Béline, Multi-block SO-PLS approach based on infrared spectroscopy for anaerobic digestion process monitoring. Chemometrics and Intelligent Laboratory Systems, Vol. 196, p. 103905, 2020.
[31]E.P. Sánchez-Hernández, P. Weiland, and R. Borja, The effect of biogas sparging on cow manure characteristics and its subsequent anaerobic biodegradation. International Biodeterioration & Biodegradation, Vol. 83, pp. 10-16, 2013..
[32]H. Alidadi, S. Etemadi Mashhadi, A. Najafpour, B. Moheb Rad, Study of biogas production process using a mixture of municipal waste leachate and animal waste. Journal of Community Health Research, Vol. 3, No. 2, pp. 44-54, 2017, (in Persian)..
[33]S. Youngsukkasem, H. Barghi, S.K. Rakshit, M.J. Taherzadeh, Rapid biogas production by compact multi-layer membrane bioreactor: efficiency of synthetic polymeric membranes. Energies, Vol. 6, No. 12, pp. 6211-6224, 2013.
[34]Z. Huang, S.L. Ong, and H.Y. Ng, Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water research, Vol. 45, No. 2, pp.705-713, 2011.
[35]Y. Hong, R.A. Bayly, D. Salasso, J.R. Cumin, D.E. Sproule, S. Chang, Zenon Technology Partnership, Method for utilizing internally generated biogas for closed membrane system operation. U.S. Patent No. 8.580.113, 2013.
[36]M. Germec, A. Demirci, I. Turhan, Biofilm reactors for value-added products production: an in-depth review. Biocatalysis and Agricultural Biotechnology, Vol. 27, p. 101662, 2020.
[37]S. Aslanzadeh, K. Rajendran, A. Jeihanipour, M.J. Taherzadeh, The effect of effluent recirculation in a semi-continuous two-stage anaerobic digestion system. Energies, Vol. 6, No. 6, pp. 2966-2981, 2013.
[38]J. Ji, A. Kakade, Z. Yu, A. Khan, P. Liu, X. Li, Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. Journal of Environmental Management, Vol. 270, p. 110913, 2020.
[39]M. Franchetti, Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: A food service provider case study. Journal of environmental management, Vol. 123, pp. 42-48, 2013.
[40]Y. Li, S.Y. Park, and J. Zhu, Solid-state anaerobic digestion for methane production from organic waste. Renewable and sustainable energy reviews, Vol. 15, No. 1, pp. 821-826. 2011.
[41] Y. Liu, J. Fang, X. Tong, C. Huan, G. Ji, Y. Zeng, L. Xu, Z. Yan, Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresource Technology, Vol. 293, p. 122066, 2019.
[42]L.M. Shitophyta, M. Hanafi, Y.E. Nugroho, Optimization of biogas from corn stover using liquid and solid-state anaerobic digestion. Jurnal Program Studi Teknik Mesin, Vol. 9, No. 1, pp. 1-5. 2020.
[43]H. Hahn, B. Krautkremer, K. Hartmann, M. Wachendorf, Review of concepts for a demand-driven biogas supply for flexible power generation. Renewable and Sustainable Energy Reviews, Vol. 29, pp. 383-393, 2014.
[44]J. Großmann, Method and system for the gas-tight process control of percolators in a biogas method having two or more stages, US Patent No. 8.969.032, 2015.
[45]H. Hahn, B. Krautkremer, K. Hartmann, M. Wachendorf, Review of concepts for a demand-driven biogas supply for flexible power generation. Renewable and Sustainable Energy Reviews, Vol. 29, pp. 383-393, 2014.
[46]J.W. Jensen, G.Ø. RØnsch, and S.B. Antonsen, Methods of processing municipal solid waste (msw) using concurrent enzymatic hydrolysis and microbial fermentation. Renescience A/S, 2013.
[47]M.P. Jimenez-Castro, L.S. Buller, A. Zoffreo. M.T. Timko, T. Forster-Carneiro, Two-stage anaerobic digestion of orange peel without pre-treatment: Experimental evaluation and application to São Paulo state. Journal of Environmental Chemical Engineering, Vol. 8. No. 4, p. 104035, 2020.
[48]I. Colussi, A. Cortesi, C. Del Piccolo, V. Gallo, A.S. Rubesa Fernandez, R. Vitanza, Improvement of methane yield from maize silage by a two-stage anaerobic process. ICheaP-11, 11th International Conference on Chemical & Process Engineering, The Italian Association of Chemical Engineering, Milan, Italy, 2013.
[49]R. Ganesh, M. Torrijos, P. Sousbie, A. Lugardon, J.P. Steyer, J.P. Delgenes, Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste management, Vol. 34, No. 5, pp. 875-885, 2014.
[50]M.P. Jimenez-Castro, L.S. Buller, A. Zoffreo, M.T. Timko, T. Forster-Carneiro, Two-stage anaerobic digestion of orange peel without pre-treatment: Experimental evaluation and application to São Paulo state. Journal of Environmental Chemical Engineering, Vol. 8, No. 4, p. 104035, 2020.
[51]W.M. Budzianowski, K.J. Budzianowska, and D.S. Budzianowska, Analysis of solutions alleviating CO2 emissions intensity of biogas technology. International Journal of Global Warming, Vol. 9, No. 4, pp. 507-528, 2016.
[52]C. Salomoni, A. Caputo, M. Bonoli, O. Francioso, M.T. Rodriguez-Estrada, D. Palenzona, Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresource Technology, Vol. 102, No. 11, pp. 6443-6448, 2011.
[53]Y.B. Fernández, A. Soares, R. Villa, P. Vale, E. Cartmell, Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresource technology, Vol, 159, pp. 1-7, 2014.
[54]R.E. Lindeboom, J. Weijma, and J.B. van Lier, High-calorific biogas production by selective CO2 retention at autogenerated biogas pressures up to 20 bar. Environmental science & technology, Vol. 46, No. 3, pp. 1895-1902, 2012.
[55]M. Shirzad, H.K.S. Panahi, B.B. Dashti, M.A. Rajaeifar, M. Aghbashlo, M. Tabatabaei, A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renewable and Sustainable Energy Reviews, Vol. 111, pp. 571-594, 2019.
[56]A.N. Kumar, A.K. Bandarapu, and S.V. Mohan, Microbial electro-hydrolysis of sewage sludge for acidogenic production of biohydrogen and volatile fatty acids along with struvite. Chemical Engineering Journal, Vol. 374, pp. 1264-1274, 2019.
[57]A. Xia, J. Cheng, R. Lin, L. Ding, J. Zhou, K. Cen, Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose. Energy, Vol. 55, pp. 631-637, 2013.
[58]R. Amin, A. Khorshidi, A.F. Shojaei, S. Rezaei, M.A. Faramarzi, Immobilization of laccase on modified Fe3O4@ SiO2@ Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. International journal of biological macromolecules, Vol. 114, pp. 106-113, 2018.
[59]M.J. Khalid, A. Waqas, and I. Nawaz, Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw. Bioresource technology, Vol. 275, pp. 288-296, 2019.
[60]J.S. Martín del-Campo, J. Rollin, S. Myung, Y. Chun, S. Chandrayan, R. Patiño, M.W. Adams, Y.H.P. Zhang, High‐yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell‐free system. Angewandte Chemie, Vol. 125, No. 17, pp. 4685-4688, 2013.
[61]S.J. Self, B.V. Reddy, and M.A. Rosen, Review of underground coal gasification technologies and carbon capture. International Journal of Energy and Environmental Engineering, Vol. 3, No. 1, pp. 1-8, 2012.
[62] H. Guo, Y. Li, Q. Wang, W. Zhao, J. Jia, J. Lv, S. Liu, D. Xia, Feasibility analysis of the in situ conversion of biomethane in surface weathered coal. Fuel, Vol. 268, p. 117273, 2020.
[63]J. Abubaker, K. Risberg, and M. Pell, Biogas residues as fertilisers–Effects on wheat growth and soil microbial activities. Applied Energy, Vol. 99, pp. 126-134, 2012.
[64]D. Kim, K. Lee, and K.Y. Park, Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel, Vol. 130, pp. 120-125, 2014.
[65]D. Ma, J. Wang, T. Chen, C. Shi, S. Peng, Z. Yue, Iron-oxide-promoted anaerobic process of the aquatic plant of curly leaf pondweed. Energy & Fuels, Vol. 29, No. 7, pp. 4356-4360, 2015.
[66]M.A. Ganzoury and N.K. Allam, Impact of nanotechnology on biogas production: a mini-review. Renewable and Sustainable Energy Reviews, Vol 50, pp. 1392-1404, 2015.
[67]C.E.P. Cerri, X. You, M.R. Cherubin, C.S. Moreira, G.S. Raucci, B.D.A. Castigioni, P.A. Alves, D.G.P. Cerri, F.F.D.C. Mello, C.C. Cerri, Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production. PLoS One, Vol. 12, No. 5, p. 0176948, 2017.
 [68]F. Suanon, Q. Sun, M. Li, X. Cai, Y. Zhang, Y. Yan, C.P. Yu, Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of hazardous materials, Vol. 321, pp. 47-53, 2017.
[69]T. Jia, Z. Wang, H. Shan, Y. Liu, L. Gong, Effect of nanoscale zero-valent iron on sludge anaerobic digestion. Resources, Conservation and Recycling, Vol. 127, pp. 190-195, 2017.
[70]E. Abdelsalam, M. Samer, Y.A. Attia, M.A. Abdel-Hadi, H.E. Hassan, Y. Badr, Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, Vol. 87, pp. 592-598, 2016.
[71]J. Roussel, Metal behaviour in anaerobic sludge digesters supplemented with trace nutrients, Doctoral dissertation, University of Birmingham, Birmingham, 2013. 
[72]J. Bartacek, F.G. Fermoso, A.M. Baldó-Urrutia, E.D. Van Hullebusch, P.N. Lens, Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. Journal of Industrial Microbiology and Biotechnology, Vol. 35, No. 11, pp. 1465-1474, 2008.
[73]A. Ali, R.B. Mahar, R.A. Soomro, S.T.H. Sherazi, Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 39, No. 16, pp. 1815-1822, 2017.
[74]L. Otero-González, J.A. Field, R. Sierra-Alvarez, Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of environmental management, Vol. 135, pp. 110-117, 2014.
[75]J. Hamedi, M. Dehhaghi, and F. Mohammdipanah, Isolation of Extremely Heavy Metal Resistant Strains of Rare Actinomycetes from High Metal Content Soils in Iran. International Journal of Environmental Research, Vol. 9, No. 2, pp. 475-480, 2015.
[76]O. Zaytseva and G. Neumann, Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, Vol. 3, No. 1, pp. 1-26, 2016.
[77]M.A. Rajaeifar, H. Ghanavati, B.B. Dashti, R. Heijungs, M. Aghbashlo, M. Tabatabaei, Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review. Renewable and Sustainable Energy Reviews, Vol. 79, pp. 414-439, 2017.
[78] L.L. Li, Z.H. Tong, C.Y. Fang, J. Chu, H.Q. Yu, Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Research, Vol. 70, pp. 1-8, 2015.
[79]Y. Wang, D. Wang, and H. Fang, Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron. RSC advances, Vol. 8, No. 48, pp. 27181-27190, 2018.
[80]H.M. Lo, H.Y. Chiu, S.W. Lo, F.C. Lo, Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Bioresource Technology, Vol. 114, pp.  90-94, 2012.