Enhancing Hydrogen Storage Properties of Metal Hybrides Enhancement by Mechanical Deformations

Document Type : Review Article

Authors

1 University of Esfahan, Esfahan, Iran

2 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3 Department of Metallurgy Engineering, Malekeashtar University, Tehran, Iran

Abstract

Increasing demand for energy and reducing fossil fuels have created the need for clean and reliable energy. Hydrogen-based energy systems are one of the new solutions in the long run. The main challenge of this technology is the production of a large amount of hydrogen from renewable sources. Some of the intermediates and their alloys produce metal hydrides in reaction with hydrogen gas or atom from an electrolyte. The reactive hydride reaction of these metals and their alloys introduces them as a reservoir for hydrogen storage. The nanoscale causes an increase in the rate of hydrogen uptake and hydrogen removal in metals and alloys. The use of milling mills has a wide application in the separation of hydride grains. The Mg and Mg2Ni nanocrystals obtained from milling mills have shown a faster rate of hydrogen uptake than the mass of these particles at a relatively low temperature. Because the surface effects increase and the length of the penetration path is reduced.

Keywords


1. Benjamin, J.S., Volin, T.E.: The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974)
2. Huot, J., Liang, G., Schulz, R.: Mechanically alloyed metal hydride systems. Appl. Phys. A 72, 187–195 (2001)
3. Suryanarayana, C.: Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18(3), 203–211 (2008)
4. Valiev, R.Z., Zehetbauer, M.J., Estrin, Y., Höppel, H.W., Ivanisenko, Y., Hahn, H., Wilde, G., Roven, H.J., Sauvage, X., Langdon, T.G.: The innovation potential of bulk nanostructured materials. Adv. Eng. Mater. 9(7), 527–533 (2007)
5. Gaffet, E., Harmelin, M., Faudot, F.: Far-from-equilibrium phase transition induced by mechanical alloying in the Cu–Fe system. J. Alloy. Compd. 194(1), 23–30 (1993).
6. Mine, Y., Tsumagari, T., Horita, Z.: Hydrogen trapping on lattice defects produced by high-pressure torsion in Fe–0.01 mass% C alloy. Scripta Mater. 63(5), 552–555 (2010).
7. Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1–88 (2004).
8. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)
9. Danaie, M., Tao, S.X., Kalisvaart, P., Mitlin, D.: Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta Mater. 58(8), 3162–3172 (2010)
10. Young, R.A.: The rietveld method. In: Young, R.A. (ed.) IUCr Monographs on Crystallography-5, p. 298. Oxford University Press, Oxford (1993)
11. Bridgman, P.W.: On torsion combined with compression. J. Appl. Phys. 15(6), 273–283 (1943)
12. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)
13. Edalati,K.,Emami,H.,Matsuda,J.,Akiba,E.,Horita,Z.: Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 88, 190–195 (2015).
14. Dreele, R.B.V.: Rietveld refinement. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)
15. Cranswick, L.M.D.: Computer software for powder diffraction. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)
16. Cheary, R.W., Coelho, A.A., Cline, J.P.: Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Nat. Inst. Stand. Technol. 109(1), 1–25 (2004)
17. Gayle, F.W., Biancaniello, F.S.: Stacking faults and crystallite size in mechanically alloyed Cu–Co. Nanostruct. Mater. 6(1–4), 429–432 (1995).
18. Klassen, T., Herr, U., Averback, R.S.: Ball milling of systems with positive heat of mixing: Effect of temperature in Ag–Cu. Acta Mater. 45(7), 2921–2930 (1997)
19. Edalati, K., Horita, Z.: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652, 325–352 (2016).
20. Ebrahimi-Purkani, A., Kashani-Bozorg, S.F.: Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. J. Alloy. Compd. 456(1–2), 211–215 (2008).
21. Vermeulen, P.: Thiel, E.F.M.J.v., Notten, P.H.L.: Ternary MgTiX-alloys: a promising route toward low-temperature, high-capacity, hydrogen-storage materialsthin films. Chem. Eur. J. 13 (35), 9892–9898 (2007)
22. Rousselot, S., Bichat, M.P., Guay, D., Roué, L.: Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 175(1), 621–624 (2008).
23. Varin, R.A., Zbroniec, L., Polanski, M., Bystrzycki, J.: A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides. Energies 4(1), 1–25 (2011)
24. Leiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Kiminami, C.S., Botta, W.J.: Nanoscale grain refinement and H-Sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 12(8), 786–792 (2010)
25. Huot, J., Ravnsbæk, D.B., Zhang, J., Cuevas, F., Latroche, M., Jensen, T.R.:
Mechanochemical synthesis of hydrogen storage materials. Prog. Mater Sci. 58(1), 30–75 (2013).
26. Faisal, M., Gupta, A., Shervani, S., Balani, K., Subramaniam, A.: Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid. Int. J. Hydrogen Energy 40(35), 11498–11505 (2015). doi:10.1016/j.ijhydene.2015.03.095
27. Hongo, T., Edalati, K., Iwaoka, H., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: High-pressure torsion of palladium: hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains. Mater. Sci. Eng. A 618, 1–8 (2014). doi:10.1016/j.msea.2014.08.074
28. Bridgman, P.W.: Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48(10), 825–847 (1935)
29. Zhilyaev, A.P., Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)
30. Hohenwarter, A., Bachmaier, A., Gludovatz, B., Scheriau, S., Pippan, R.: Technical parameters affecting grain refinement by high pressure torsion. Int. J. Mater. Res. 100(12), 1653–1661 (2009).
31. Sergueeva, A.V., Song, C., Valiev, R.Z., Mukherjee, A.K.: Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A 339(1–2), 159–165 (2003).
32. Edalati, K., Matsuda, J., Yanagida, A., Akiba, E., Horita, Z.: Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int. J. Hydrogen Energy 39(28), 15589–15594 (2014). doi:10.1016/j.ijhydene. 2014.07.124
33. Bonarski, B.J., Schafler, E., Mingler, B., Skrotzki, W., Mikulowski, B., Zehetbauer, M.J.: Texture evolution of Mg during high-pressure torsion. J. Mater. Sci. 43(23–24), 7513–7518 (2008).
34. Kusadome, Y., Ikeda, K., Nakamori, Y., Orimo, S., Horita, Z.: Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scr. Mater. 57(8), 751–753 (2007)
35. Révész, Á., Kánya, Z., Verebélyi, T., Szabó, P.J., Zhilyaev, A.P., Spassov, T.: The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30. J. Alloy. Compd. 504(1), 83–88 (2010)
36. Skripnyuk, V., Rabkin, E., Estrin, Y., Lapovok, R.: The effect of ball milling and equal channel angular pressing on hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 52(2), 405–414 (2004)
37. Révész, Á., Kis-Tóth, Á., Varga, L.K., Schafler, E., Bakonyi, I., Spassov, T.: Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion. Int. J. Hydrogen Energy 37(7), 5769–5776 (2012).
38. Hongo, T., Edalati, K., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 92, 46–54 (2015)
39. Huot, J., Swainson, I., Schulz, R.: Phase transformation in magnesium hydride induced by ball milling. Ann. Chim. Sci. Mat. 31(1), 135–144 (2006)
40. Krystian, M., Setman, D., Mingler, B., Krexner, G., Zehetbauer, M.J.: Formation of superabundant vacancies in nano-Pd–H generated by high-pressure torsion. Scr. Mater. 62(1), 49–52 (2010).
41. Skripnyuk, V., Buchman, E., Rabkin, E., Estrin, Y., Popov, M., Jorgensen, S.: The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy. J. Alloy. Compd. 436, 99–106 (2007)
42. Lima, G.F., Jorge, A.M., Leiva, D.R., Kiminami, C.S., Bolfarini, C., Botta, W.J.: Severe plastic deformation of Mg-Fe powders to produce bulk hydrides—art. no. 012015. In: Schultz, L., Eckert, J., Battezzati, L., Stoica, M. (eds.) 13th International Conference on Rapidly Quenched and Metastable Materials, vol. 144. Journal of Physics Conference Series, pp. 12015–12015. Iop Publishing Ltd, Bristol (2009)
43. Løken, S., Solberg, J.K., Maehlen, J.P., Denys, R.V., Lototsky, M.V., Tarasov, B.P., Yartys, V.A.: Nanostructured Mg–Mm–Ni hydrogen storage alloy: Structure-properties relationship. J. Alloy. Compd. 446–447, 114–120 (2007)
44. Jorge Jr, A.M., Prokofiev, E., Ferreira de Lima, G., Rauch, E., Veron, M., Botta, W.J., Kawasaki, M., Langdon, T.G.: An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 38(20), 8306– 8312 (2013).
45. Skripnyuk, V.M., Rabkin, E., Bendersky, L.A., Magrez, A., Carreño-Morelli, E., Estrin, Y.: Hydrogen storage properties of as-synthesized and severely deformed magnesium—multiwall carbon nanotubes composite. Int. J. Hydrogen Energy 35(11), 5471–5478 (2010)
46. Bonisch, M., Zehetbauer, M.J., Krystian, M., Setman, D., Krexner, G.: Stabilization of lattice defects in HPT-deformed palladium hydride. In: Wang, J.T., Figueiredo, R.B., Langdon, T.G.(eds.) Nanomaterials by Severe Plastic Deformation: Nanospd5, Pts 1 and 2, vol. 667–669. Materials Science Forum, pp. 427–432. (2011)
47. Hongo, T., Edalati, K., Iwaoka, H., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: High-pressure torsion of palladium: hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains. Mater. Sci. Eng. A 618, 1–8 (2014).
48. Fleck, N.A., Johnson, K.L., Mear, M.E., Zhang, L.C.: Cold-rolling of foil. Proc. Inst. Mech. Eng. Part B-J. Eng. Manufact. 206(2), 119–131 (1992).
49. Lee, S.H., Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T.: Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr. Mater. 46(4), 281–285 (2002).
50. Nishimura, C., Komaki, M., Hwang, S., Amano, M.: V-Ni alloy membranes for hydrogen purification. J. Alloy. Compd. 330, 902–906 (2002).
51. Chung, H.S., Lee, J.-Y.: Hydriding and dehydriding reaction rate of FeTi intermetallic compound. Int. J. Hydrogen Energy 10(7–8), 537–542 (1985).
52. Zhang, H., Huang, G., Wang, L., Roven, H.J., Pan, F.: Enhanced mechanical properties of AZ31 magnesium alloy sheets processed by three-directional rolling. J. Alloy. Compd. 575, 408–413 (2013)
53. Trudeau, M.L., Dignard-Bailey, L., Schulz, R., Tessier, P., Zaluski, L., Ryan, D.H., Strom-Olsen, J.O.: The oxidation of nanocrystalline FeTi hydrogen storage compounds. Nanostruct. Mater. 1, 457–464 (1992)
54. Couillaud, S., Enoki, H., Amira, S., Bobet, J.L., Akiba, E., Huot, J.: Effect of ball milling andcold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J. Alloy.Compd. 484(1–2), 154–158 (2009).
55. Valiev, R., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)
56. Langdon, T.G.: The characteristic of grain refinement in materials processed by severe plastic deformation. Rev. Adv. Mater. Sci. 13(1), 6–14 (2006)
57. Ueda, T.T., Tsukahara, M., Kamiya, Y., Kikuchi, S.: Preparation and hydrogen storage properties of Mg-Ni-Mg2Ni laminate composites. J. Alloy. Compd. 386, 253–257 (2005)
58. Pedneault, S., Roué, L., Huot, J.: Synthesis of metal hydrides by cold rolling. Mater. Sci.Forum 570, 33–38 (2008)
59. Suganuma, K., Miyamura, H., Kikuchi, S., Takeichi, N., Tanaka, K., Tanaka, H., Kuriyama,N., Ueda, T.T., Tsukahara, M.: Hydrogen storage properties of Mg-Al alloy prepared by superlamination technique. Adv. Mater. Res. 26–28, 857–860 (2007)
60. Takeichi, N., Tanaka, K., Tanaka, H., Ueda, T.T., Kamiya, Y., Tsukahara, M., Miyamura, H.,Kikuchi, S.: The hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure. J. Alloy. Compd. 446–447, 543–548 (2007)
61. Dufour, J., Huot, J.: Study of Mg6Pd alloy synthesized by cold rolling. J. Alloy. Compd.446–447, 147–151 (2007)
62. Danaie, M., Mauer, C., Mitlin, D., Huot, J.: Hydrogen storage in bulk Mg-Ti and Mg-stainless steel multilayer composites synthesized via accumulative roll-bonding (ARB). Int.J. Hydrogen Energy 36(4), 3022–3036 (2011).
63. Amira, S., Huot, J.: Effect of cold rolling on hydrogen sorption properties of die-cast and as-cast magnesium alloys. J. Alloy. Compd. 520, 287–294 (2012).
64. Langdon, T.G.: The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A 462(1–2), 3–11 (2007).
65. Jorge Jr, A.M., Ferreira de Lima, G., Martins Triques, M.R., Botta, W.J., Kiminami, C.S.,Nogueira, R.P., Yavari, A.R., Langdon, T.G.: Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int. J. Hydrogen Energy 39(8), 3810–3821 (2014).
66. Leiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Kiminami, C.S., Botta, W.J.: Nanoscale grain refinement and H-Sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 12(8), 786–792 (2010)
67. Krystian, M., Zehetbauer, M.J., Kropik, H., Mingler, B., Krexner, G.: Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J. Alloy. Compd. 509(Supplement 1), S449–S455 (2011).
68. Floriano, R., Leiva, D.R., Deledda, S., Hauback, B.C., Botta, W.J.: Cold rolling of MgH2 powders containing different additives. Int. J. Hydrogen Energy 38(36), 16193–16198 (2013).
69. Révész, Á., Gajdics, M., Varga, L.K., Krállics, G., Péter, L., Spassov, T.: Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling.Int. J. Hydrogen Energy 39(18), 9911–9917 (2014).