Review of the management of shallow geothermal energy consumption in the world by 2015

Document Type : Review Article

Authors

Department of Biosystem engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

This paper presents the application of shallow geothermal energy for direct use in the world, and a research background has been reviewed by 2015. The distribution of thermal energy used is approximately 55.3% for terrestrial thermal pumps, 20.3% for water treatment, 15% for space heating, 4.5% for greenhouses and outdoor heating, 2% for Aquaculture ponds and crematorium heating, 1.8% for heating industrial processes, 0.4% for melting and cooling, 0.4% for drying agricultural products and 0.3% for other uses. An annual energy savings of 350 million barrels of oil will prevent the release of 46 million tons of carbon and 148 million tons of CO2 in space. In the following, a brief review of the creation of a shallow geothermal energy market is presented. One of the methods in Barcelona, Spain, is to create a GIS framework for a spatial database and store the main information needed to manage SGE systems such as groundwater velocity, thermal conductivity or thermal heat capacity, and a set of GIS tools to define. Implementation and control. The heat exchange rate and thermal impairment are calculated on the basis of the analytical solutions of porous heat transfer equation.

Keywords


[1] H. Safaei, D.W. Keith, Bulk energy storage needed to decarbonizes electricity, Energy Environ Sci, Vol. 8, No.12, pp. 3409-3417, 2015.
[2] K. Tokimatsu, S. Konishi, K. Ishihara, T. Tezuka, R. Yasuoka, M. Nishio. Role of innovative technologies under the global zero emissions scenarios. Appl Energy. Vol.162, pp.1483-1493, 2016.
[3] S.K. Soni, M. Pandey, V.N. Bartaria. Ground coupled heat exchangers: a review and applications. Renew Sustain Energy Rev, Vol.47, PP. 83–92, 2015.
[4] J.W. Lund, D.H. Freeston, T.L. Boyd. Direct utilization of geothermal energy 2010 worldwide review. Geothermics ,Vol.40, No. 3, PP.159–80, 2011.
[5] EREC. Mapping renewable energy pathways towards 2020. European Renewable Energy Council. EU ROADMAP; 2011.
[6] K. Menberg, P. Bayer,K.  Zosseder, S. Rumohr, P. Blum. Subsurface urban heat islands in German cities. Sci Total Environ, review. In: Proceedings world geothermal congress, Melbourne,Australia; PP:19–25,  2015.
[7] A. García-Gil, E. Vázquez-Suñe, E.G. Schneider, J. A. Sánchez-Navarro, J. Mateo-Lázaro, The theral consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Sci Total Environ, PP.485–486,  2014
[8] J. Epting, P. Huggenberger. Unraveling the heat island effect observed in urban groundwater bodies – definition of a potential natural state. Hydrol. Vol. 501, PP.193–204, 2013.
[9] C. Urich,  R.Sitzenfrei, M. Möderl,W.  Rauch. Einfluss der Siedlungsstruktur auf das thermische Nutzungspotential von oberflächennahen Aquiferen. Osterreichische Wasser- Und Abfallwirtschaft, Vol.62, PP.113–9,  2010.
[10] F. Jaudin, A. Latham, S. Bezelgues, A. Poux, L. Angelino,  REGEOCITIES UE Project: IEE/11/041. D2.2: general report of the current situation of the regulative framework for the SGE systems; 2013.
[11] S. Hähnlein, P. Bayer, G. Ferguson, P. Blum. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy, Vol. 59,  PP.914–925, 2013.
[12] A. Alcaraz, G. García-Gil, V. Enric, V.Violeta. Use rights markets for shallow geothermal energy management. Applied Energy, Vol.172, pp. 34–4,  2016.
[13]  M.Z.Jacobson, M.A. Delucchi, G. Bazouin, Z.A. Bauer, C. Heavey, E.  Fisher.  Clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ Sci,  2015.
[14] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids. Oxford: Claremore Press;1959.
[15] H. Yang, P. Cui, Z. Fang.  Vertical-borehole ground-coupled heat pumps: a review of models and systems. Appl Energy, Vol. 87, No. 1, PP.16–27, 2010.