Review on Different Types of Solar Cells and Their Performance Mechanism

Document Type : Review Article

Authors

1 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

2 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran P.O.B. 15875-4413 Tehran, Iran.

3 Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran. Iran

Abstract

Today, energy crisis is one of the most important problems in the world and to overcome, different countries apply various solutions. Non-renewable resources of energy such as fossil fuels are going to end rapidly. Applying of non-renewable resources causes to environmental pollution and sequent global warming. Therefore tendency to apply renewable energy resources such as wind, solar energy, geothermal, etc. is increased around the world and government interested to invest on these types of energy. This review paper introduces briefly about all types of energy and especially on solar energy as the most important renewable resources. In this paper, solar cells as photovoltaic devices that convert solar energy to electricity are introduced, also different types of solar cells, advantages and disadvantages of each group, performance mechanism and finally some progress in solar cell technologies, is considered.

Keywords


[1]     P. V. Kamat, "Meeting the clean energy demand: nanostructure architectures for solar energy conversion," The Journal of Physical Chemistry C, vol. 111, pp. 2834-2860, 2007.
[2]     C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, and K. Müllen, "Polyphenylene-based materials for organic photovoltaics," Chemical Reviews, vol. 110, pp. 6817-6855, 2010.
[3]     B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 549-573, 3/23/ 2006.
[4]     S. M. Hanasoge, T. L. Duvall, and K. R. Sreenivasan, "Anomalously weak solar convection," Proceedings of the National Academy of Sciences, vol. 109, pp. 11928-11932, 2012.
[5]     B. CE, Solar Cells. New York, 1976.
[6]     P. JE, Choice of an equivalent black body solar temperature vol. 51, 1993.
[7]     C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, "Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells," Organic Electronics, vol. 14, pp. 143-148, 2013.
[8]     K.-H. Choi, J. Kim, Y.-J. Noh, S.-I. Na, and H.-K. Kim, "Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells," Solar Energy Materials and Solar Cells, vol. 110, pp. 147-153, 2013.
[9]     C.-C. Chen, L. Dou, R. Zhu, C.-H. Chung, T.-B. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, and Y. Yang, "Visibly transparent polymer solar cells produced by solution processing," Acs Nano, vol. 6, pp. 7185-7190, 2012.
[10]   C.-C. Chen, L. Dou, J. Gao, W.-H. Chang, G. Li, and Y. Yang, "High-performance semi-transparent polymer solar cells possessing tandem structures," Energy & Environmental Science, vol. 6, pp. 2714-2720, 2013.
[11]   P. Gevorkian, Sustainable Energy System Engineering: The Complete Green Building Design Resource: McGraw Hill Professional, 2007.
[12]   S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS bulletin, vol. 30, pp. 28-32, 2005.
[13]   M. Knupfer, "Exciton binding energies in organic semiconductors," Applied Physics A, vol. 77, pp. 623-626, 2003.
[14]   E. Ernst and H. VonFoerster, "Electron bunches of short time duration," Journal of Applied Physics, vol. 25, pp. 674-675, 1954.
[15]   T. Saga, NPG Asia Mater, vol. 2, pp. 96-102, 2010.
[16]   P. Sirimanne and V. Perera, "Progress in dye‐sensitized solid state solar cells," physica status solidi (b), vol. 245, pp. 1828-1833, 2008.
[17]   A. Petrozza, C. Groves, and H. J. Snaith, "Electron Transport and Recombination in Dye-Sensitized Mesoporous TiO2 Probed by Photoinduced Charge-Conductivity Modulation Spectroscopy with Monte Carlo Modeling," Journal of the American Chemical Society, vol. 130, pp. 12912-12920, 2008/10/01 2008.
[18]   M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorganic Chemistry, vol. 44, pp. 6841-6851, 2005/10/01 2005.
[19]   J. E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S. D. Ogier, K. Carr, M. Grätzel, and J. R. Durrant, "Parameters Influencing Charge Separation in Solid-State Dye-Sensitized Solar Cells Using Novel Hole Conductors," Advanced Functional Materials, vol. 16, pp. 1832-1838, 2006.
[20]   H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, "Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture," Nano Letters, vol. 7, pp. 3372-3376, 2007.
[21]   H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin, and M. Grätzel, "Charge collection and pore filling in solid-state dye-sensitized solar cells," Nanotechnology, vol. 19, p. 424003, 2008.
[22]   H. J. Snaith and M. Grätzel, "Light-enhanced charge mobility in a molecular hole transporter," Physical review letters, vol. 98, p. 177402, 2007.
[23]   J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban, "Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells," The Journal of Physical Chemistry B, vol. 108, pp. 8106-8118, 2004.
[24]   P. V. Kamat, "Quantum dot solar cells. Semiconductor nanocrystals as light harvesters†," The Journal of Physical Chemistry C, vol. 112, pp. 18737-18753, 2008.
[25]   M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, and Z. Li, "New triphenylamine-based organic dyes for efficient dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 111, pp. 4465-4472, 2007.
[26]   H. J. Snaith and L. Schmidt‐Mende, "Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells," Advanced Materials, vol. 19, pp. 3187-3200, 2007.
[27]   W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley, "Porphyrins as light harvesters in the dye-sensitised TiO< sub> 2 solar cell," Coordination Chemistry Reviews, vol. 248, pp. 1363-1379, 2004.
[28]   L. Peter, "Characterization and modeling of dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 111, pp. 6601-6612, 2007.
[29]   G. Hodes, "Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells," The Journal of Physical Chemistry C, vol. 112, pp. 17778-17787, 2008.
[30]   F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, "Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells," Journal of the American Chemical Society, vol. 130, pp. 10720-10728, 2008.
[31]   M. Biancardo, K. West, and F. C. Krebs, "Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT: PSS counter electrodes applied to gel electrolyte assemblies," Journal of Photochemistry and Photobiology A: Chemistry, vol. 187, pp. 395-401, 2007.
[32]   H. J. Snaith, G. L. Whiting, B. Sun, N. C. Greenham, W. T. Huck, and R. H. Friend, "Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes," Nano letters, vol. 5, pp. 1653-1657, 2005.
[33]   W. H. Howie, F. Claeyssens, H. Miura, and L. M. Peter, "Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes," Journal of the American Chemical Society, vol. 130, pp. 1367-1375, 2008.
[34]   G. M. Lowman and P. T. Hammond, "Solid‐State Dye‐Sensitized Solar Cells Combining a Porous TiO2 Film and a Layer‐by‐Layer Composite Electrolyte," Small, vol. 1, pp. 1070-1073, 2005.
[35]   D. Eder and A. H. Windle, "Carbon–Inorganic Hybrid Materials: The Carbon‐Nanotube/TiO2 Interface," Advanced Materials, vol. 20, pp. 1787-1793, 2008.
[36]   W. Schnabel, Polymers and light: Wiley. com, 2007.
[37]   B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, pp. 737-740, 1991.
[38]   A. Kay and M. Graetzel, "Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins," The Journal of Physical Chemistry, vol. 97, pp. 6272-6277, 1993.
[39]   B. G. O'Regan, M., Nature vol. 353, p. 737−740 1991.
[40]   Y. T. AE Suliman, L. Xu, Solar Energy Mater. Solar Cell, vol. 91 pp. 1658–1662, 2007.
[41]   A. Furube, M. Murai, S. Watanabe, K. Hara, R. Katoh, and M. Tachiya, "Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In< sub> 2 O< sub> 3 thin films: Comparison with SnO< sub> 2, ZnO, and TiO< sub> 2 films," Journal of Photochemistry and Photobiology A: Chemistry, vol. 182, pp. 273-279, 2006.
[42]   K. Sayama, H. Sugihara, and H. Arakawa, "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye," Chemistry of Materials, vol. 10, pp. 3825-3832, 1998.
[43]   Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, "Characteristics of high efficiency dye-sensitized solar cells," The Journal of Physical Chemistry B, vol. 110, pp. 25210-25221, 2006.
[44]   K. Kalyanasundaram and M. Grätzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coordination chemistry reviews, vol. 177, pp. 347-414, 1998.
[45]   E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, "Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers," Journal of the American Chemical Society, vol. 125, pp. 475-482, 2003.
[46]   K. Tennakone, V. Perera, I. Kottegoda, and G. Kumara, "Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films," Journal of Physics D: Applied Physics, vol. 32, p. 374, 1999.
[47]   T. Taguchi, X.-t. Zhang, I. Sutanto, K.-i. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragami, and A. Fujishima, "Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO 2 nanoporous film," Chemical Communications, pp. 2480-2481, 2003.
[48]   G. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. Jayaweera, and K. Tennakone, "Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 183-185, 2004.
[49]   J. Bouclé, P. Ravirajan, and J. Nelson, "Hybrid polymer–metal oxide thin films for photovoltaic applications," Journal of Materials Chemistry, vol. 17, pp. 3141-3153, 2007.
[50]   I. Gur, N. A. Fromer, C.-P. Chen, A. G. Kanaras, and A. P. Alivisatos, "Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals," Nano Letters, vol. 7, pp. 409-414, 2007.
[51]   A. Mozer, Y. Wada, K.-J. Jiang, N. Masaki, S. Yanagida, and S. Mori, "Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and a conjugated polymer hole conductor," Applied physics letters, vol. 89, pp. 043509-043509-3, 2006.
[52]   A. Hagfeldt and M. Graetzel, "Light-induced redox reactions in nanocrystalline systems," Chemical Reviews, vol. 95, pp. 49-68, 1995.
[53]   Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, "Applications of light scattering in dye-sensitized solar cells," Physical Chemistry Chemical Physics, vol. 14, pp. 14982-14998, 2012.
[54]   O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, "Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell," Science, vol. 334, pp. 1530-1533, 2011.
[55]   P. V. Kamat, "Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer," Accounts of chemical research, vol. 45, pp. 1906-1915, 2012.
[56]   P. K. Santra and P. V. Kamat, "Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%," Journal of the American Chemical Society, vol. 134, pp. 2508-2511, 2012.
[57]   S.-J. Moon, Y. Itzhaik, J.-H. Yum, S. M. Zakeeruddin, G. Hodes, and M. Grätzel, "Sb2S3-based mesoscopic solar cell using an organic hole conductor," The Journal of Physical Chemistry Letters, vol. 1, pp. 1524-1527, 2010.
[58]   C. Li, Y. Chen, Y. Wang, Z. Iqbal, M. Chhowalla, and S. Mitra, "A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells," Journal of Materials Chemistry, vol. 17, pp. 2406-2411, 2007.
[59]   L. Schmidt‐Mende, W. M. Campbell, Q. Wang, K. W. Jolley, D. L. Officer, M. K. Nazeeruddin, and M. Grätzel, "Zn‐Porphyrin‐Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells," ChemPhysChem, vol. 6, pp. 1253-1258, 2005.
[60]   J. M. K. M. M. Wienk, W. J. H. Verhees, J. Knol, J. C. and P. A. v. H. Hummelen, R. A. J. Janssen, Angew. Chem. Int. Ed., vol. 42, pp. 3371 – 3375, 2003.
[61]   J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science, vol. 317, pp. 222-225, 2007.
[62]   P. Kumaresan, S. Vegiraju, Y. Ezhumalai, S. L. Yau, C. Kim, W.-H. Lee, and M.-C. Chen, "Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells," Polymers, vol. 6, pp. 2645-2669, 2014.
[63]   S. Collavini, S. F. Völker, and J. L. Delgado, "Understanding the Outstanding Power Conversion Efficiency of Perovskite‐Based Solar Cells," Angewandte Chemie International Edition, vol. 54, pp. 9757-9759, 2015.
[64]   A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[65]   E. Wei, X. Ren, L. Chen, and W. C. Choy, "The efficiency limit of CH3NH3PbI3 perovskite solar cells," Applied Physics Letters, vol. 106, p. 221104, 2015.
[66]   C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, and M. S. Islam, "Ionic transport in hybrid lead iodide perovskite solar cells," Nature communications, vol. 6, 2015.
[67]   G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
[68]   J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," Nano letters, vol. 13, pp. 1764-1769, 2013.
[69]   S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-344, 2013.