Polymer Solar Cell: A New Device in Conversion of Solar Energy to Electricity

Document Type : Review Article

Authors

Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

Abstract

Among the renewable resources of energy, sun is known as a main resource. Solar cells are devices that convert solar energy to electricity by photovoltaic effect. Among different types of solar cells including organic and inorganic cells, polymer solar cells (PSCs) caused to easy fabrication process, flexibility, light weight and low cost fabrication are interested. PSCs are constructed of an active layer that is sandwiched between two anode and cathode electrodes. Indium Tin Oxide (ITO) usually applied as anode in PSCs. Today scientists are surveyed on replacement of ITO with metallic nanostructures, due to loss of Indium source, high cost and complicated process for production of ITO. ITO-Free PSCs are devices that have not ITO in structure. Silver nanowires are promising candidate for ITO replacement based on favourable electrode and optical properties. In this review article, different types of energy sources, solar energy, solar cells, PSC structure and PSC performance mechanism, ITO replacement materials, ITO Free devices and Ag-NWs as good candidates for anode are considered. Also, a comparison between the power conversion efficiency of ITO based PSC and ITO-Free PSC is reported. 

Keywords


[1]     D. K. Panda, “Nanostructured organic solar cells,” 2011.
[2]     B. C. Thompson and J. M. J. Frechet, “Polymer–fullerene composite solar cells,” Angew. chemie Int. Ed., vol. 47, no. 1, pp. 58–77, 2008.
[3]     N. Johnstone, I. Haščič, and D. Popp, “Renewable energy policies and technological innovation: evidence based on patent counts,” Environ. Resour. Econ., vol. 45, no. 1, pp. 133–155, 2010.
[4]     T. K. Manna and S. M. Mahajan, “Nanotechnology in the development of photovoltaic cells,” in Clean Electrical Power, 2007. ICCEP’07. International Conference on, 2007, pp. 379–386.
[5]     S. M. Hanasoge, T. L. Duvall, and K. R. Sreenivasan, “Anomalously weak solar convection,” Proc. Natl. Acad. Sci., vol. 109, no. 30, pp. 11928–11932, 2012.
[7]     E. W. Brown, “An Introduction to Solar Energy.” pp. 1–6, 1988.
[8]     I. Dincer, “Renewable energy and sustainable development: a crucial review,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157–175, 2000.
[9]     A. F. Zobaa and R. C. Bansal, Handbook of renewable energy technology. World Scientific, 2011.
[10]   I. Bostan, A. V Gheorghe, V. Dulgheru, I. Sobor, V. Bostan, and A. Sochirean, Resilient Energy Systems: Renewables: Wind, Solar, Hydro, vol. 19. Springer Science & Business Media, 2012.
[11]   M. S. Guney, “Solar power and application methods,” Renew. Sustain. Energy Rev., vol. 57, pp. 776–785, 2016.
[12]   Wna, “Renewable Energy and Electricity | Sustainable Energy | Renewable Energy.” 2013.
[13]   G.-C. PICIU and C.-L. TRICĂ, “A POSSIBLE CLASSIFICATION OF RENEWABLE RESOURCES IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT.”
[14]   M. A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond,” Phys. E Low-dimensional Syst. Nanostructures, vol. 14, no. 1, pp. 65–70, 2002.
[16]   V. V Tyagi, N. A. A. Rahim, N. A. Rahim, A. Jeyraj, and L. Selvaraj, “Progress in solar PV technology: Research and achievement,” Renew. Sustain. Energy Rev., vol. 20, pp. 443–461, 2013.
[17]   A. M. Bagher, M. M. A. Vahid, and M. Mohsen, “Types of Solar Cells and Application,” Sci. Publ. Gr., vol. 3, no. 5, p. 94, 2015.
[18]   J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science (80-. )., vol. 317, no. 5835, pp. 222–225, 2007.
[19]   F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 4, pp. 394–412, 2009.
[20]   N. Espinosa, M. Hösel, D. Angmo, and F. C. Krebs, “Solar cells with one-day energy payback for the factories of the future,” Energy Environ. Sci., vol. 5, p. 5117, 2012.
[21]   H. H. Khaligh, “Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device Integration,” Univ. Waterloo, 2013.
[22]   D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater., vol. 23, no. 13, pp. 1482–1513, 2011.
[23]   M. S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions,” Science (80-. )., vol. 288, no. 5465, pp. 494–497, 2000.
[24]   B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano, vol. 3, no. 4, pp. 835–843, 2009.
[25]   A. N. Obraztsov, “Chemical vapour deposition: making graphene on a large scale,” Nat. Nanotechnol., vol. 4, no. 4, pp. 212–213, 2009.
[26]   X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[27]   W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells,” Electrochem. commun., vol. 10, no. 10, pp. 1555–1558, 2008.
[28]   J. Zou, H.-L. Yip, S. K. Hau, and A. K.-Y. Jen, “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells,” Appl. Phys. Lett., vol. 96, no. 20, p. 203301, 2010.
[29]   T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, “Fabrication of silver nanowire transparent electrodes at room temperature,” Nano Res., vol. 4, no. 12, pp. 1215–1222, 2011.
[30]   J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett., vol. 12, no. 6, pp. 3138–3144, 2012.
[31]   L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano, vol. 4, no. 5, pp. 2955–2963, 2010.
[32]   C. Li, Y. Chen, Y. Wang, Z. Iqbal, M. Chhowalla, and S. Mitra, “A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells,” J. Mater. Chem., vol. 17, no. 23, pp. 2406–2411, 2007.
[33]   Y.-Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, “Multilayer graphene films as transparent electrodes for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells, vol. 96, pp. 281–285, 2012.
[34]   D. Ginley, H. Hosono, and D. C. Paine, Handbook of transparent conductors. Springer Science & Business Media, 2010.
[35]   Z. Chen, K. Yang, and J. Wang, “Preparation of indium tin oxide films by vacuum evaporation,” Thin Solid Films, vol. 162, pp. 305–313, 1988.
[36]   Y.-S. Kim, Y.-C. Park, S. G. Ansari, B.-S. Lee, and H.-S. Shin, “Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 426, no. 1, pp. 124–131, 2003.
[37]   Y. Gao, G. Zhao, Z. Duan, and Y. Ren, “Preparation of ITO films using a spray pyrolysis solution containing an acetylacetone chelating agent,” Mater. Sci., vol. 32, no. 1, pp. 66–70, 2014.
[38]   Y. Han, D. Kim, J.-S. Cho, S.-K. Koh, and Y. S. Song, “Tin-doped indium oxide (ITO) film deposition by ion beam sputtering,” Sol. energy Mater. Sol. cells, vol. 65, no. 1, pp. 211–218, 2001.
[39]   A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res., vol. 3, no. 8, pp. 564–573, 2010.
[40]   M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: from small model devices to roll-to-roll processed large modules,” Org. Electron., vol. 12, no. 4, pp. 566–574, 2011.
[41]   D. Angmo and F. C. Krebs, “Flexible ITO‐free polymer solar cells,” J. Appl. Polym. Sci., vol. 129, no. 1, pp. 1–14, 2013.
[42]   P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett., vol. 10, no. 8, pp. 2944–2949, 2010.
[43]   B. E. Hardin, W. Gaynor, I.-K. Ding, S.-B. Rim, P. Peumans, and M. D. McGehee, “Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells,” Org. Electron., vol. 12, no. 6, pp. 875–879, 2011.
[44]   C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, “Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells,” Org. Electron., vol. 14, no. 1, pp. 143–148, 2013.
[45]   C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett, vol. 6, no. 1, p. 75, 2011.
[46]   C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, and Y. Yang, “Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices,” Nano Res., vol. 5, no. 11, pp. 805–814, 2012.
[47]   C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res., vol. 6, no. 7, pp. 461–468, 2013.
[48]   T. Chih-Hung, H. Sui-Ying, H. Tsung-Wei, T. Yu-Tang, C. Yan-Fang, Y. H. Jhang, L. Hsieh, W. Chung-Chih, C. Yen-Shan, and C. Chieh-Wei, “Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells,” Org. Electron., vol. 12, no. 12, pp. 2003–2011, 2011.
[49]   S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,” Nanotechnology, vol. 23, no. 18, p. 185201, 2012.
[50]   X. Zeng, Q. Zhang, R. Yu, and C. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater., vol. 22, no. 40, pp. 4484–4488, 2010.
[51]   C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J.-P. Simonato, “Highly flexible transparent film heaters based on random networks of silver nanowires,” Nano Res., vol. 5, no. 6, pp. 427–433, 2012.
[52]   E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater., vol. 11, no. 3, pp. 241–249, 2012.
[53]   G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys., vol. 47, no. 9, pp. 4086–4089, 1976.
[54]   J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett., vol. 8, no. 2, pp. 689–692, 2008.
[55]   L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp. 4075–4084, 2011.
[56]   W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater., vol. 23, no. 26, pp. 2905–2910, 2011.
[57]   D. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, “Efficient organic solar cells with solution‐processed silver nanowire electrodes,” Adv. Mater., vol. 23, no. 38, pp. 4371–4375, 2011.
[58]   J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera, and R. Pacios, “Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes,” Sol. Energy Mater. Sol. Cells, vol. 102, pp. 148–152, 2012.
[59]   M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. H. Kim, D. G. Kim, J. K. Kim, J. Park, Y. C. Kang, J. Heo, S. H. Jin, J. H. Park, and J. W. Kang, “Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes,” Adv. Funct. Mater., vol. 23, no. 34, pp. 4177–4184, 2013.