Power generation in organic Rankine cycle from wasted heat of geothermal energy and boilers to produce hydrogen using a proton exchange membrane electrolyzer

Document Type : Original Article

Authors

1 MSc,, Department of Mechanical Engineering,/Imam Khomeini International University/Qazvin/Iran

2 Associate Professor, Department of Mechanical Engineering, /Imam Khomeini International University, /Ghazvin/, Iran

3 PhD, Department of Mechanical Engineering, /West Tehran Branch/ Islamic Azad University/Tehran/ Iran

Abstract

The use of water electrolysis to produce hydrogen gas has received much attention in recent years, because in this method, water is decomposed into hydrogen and oxygen gas without any pollution. In this research, an organic Rankine cycle (ORC) is simulated and analyzed to utilize waste heat to run an electrolyzer. The power generated by ORC is used to produce hydrogen gas in proton exchange membrane electrolyzer (PEME). Model and codes for the electrolyzer is done by EES software, and thermodynamic analyzes are utilized in order to examine the performance of the proposed model. For the evaporator temperature of 67 ℃, the ORC power and thermal efficiency are obtained at 220 kW and 8.5 %, respectively. The production capacity of the electrolyzer considered in this research is 27 kg per hour of hydrogen gas with a temperature of 80 ℃ and a pressure of 101 kPa. Water electrolysis is performed using direct current between two electrodes, anode and cathode, which are separated by a membrane. To validate the simulated model, membrane potential at different values of current density is calculated.

Keywords

Main Subjects


- مراجع
[1] A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Appl. Therm. Eng., Vol.143,No.July,pp.660–675,2018,doi: 10.1016/j.applthermaleng.2018.07.136.
[2] C. L. Chen, P. Y. Li, and S. N. T. Le, “Organic Rankine Cycle for Waste Heat Recovery in a Refinery,” Ind. Eng. Chem. Res., Vol. 55, No. 12, pp. 3262–3275, 2016, doi: 10.1021/acs.iecr.5b03381.
[3] H. Chen, D. Yogi Goswami, M. M. Rahman, and E. K. Stefanakos, “Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion,” Appl. Energy, Vol. 88, No. 8, pp. 2802–2808, 2011, doi: 10.1016/j.apenergy.2011.01.029.
[4] H. Chen, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, “A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power,” Energy, Vol. 36, No. 1, pp. 549–555, 2011, doi: 10.1016/j.energy.2010.10.006.
[5] R. Rayegan and Y. X. Tao, “A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs),” Renew. Energy, Vol. 36, No. 2, pp. 659–670, 2011, doi: 10.1016/j.renene.2010.07.010.
[6] J. P. Roy, M. K. Mishra, and A. Misra, “Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle,” Energy, Vol. 35, No. 12, pp. 5049–5062, 2010, doi: 10.1016/j.energy.2010.08.013.
[7] H. Huang, J. Zhu, and B. Yan, “Comparison of the performance of two different Dual-loop organic Rankine cycles (DORC) with nanofluid for engine waste heat recovery,” Energy Convers. Manag., Vol. 126, pp. 99–109, 2016, doi: 10.1016/j.enconman.2016.07.081.
[8] Y. M. Kim, D. G. Shin, C. G. Kim, and G. B. Cho, “Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources,” Energy, Vol. 96, pp. 482–494, 2016, doi: 10.1016/j.energy.2015.12.092.
[9] E. Yun, H. Park, S. Y. Yoon, and K. C. Kim, “Dual parallel organic Rankine cycle (ORC) system for high efficiency waste heat recovery in marine application,” J. Mech. Sci. Technol., Vol. 29, No. 6, pp. 2509–2515, 2015, doi: 10.1007/s12206-015-0548-5.
[10] A. Hernandez, F. Ruiz, S. Gusev, R. De Keyser, S. Quoilin, and V. Lemort, “Experimental validation of a multiple model predictive control for waste heat recovery organic Rankine cycle systems,” Appl. Therm.Eng.,Vol.193,No.May,p.116993,2021,doi: 10.1016/j.applthermaleng.2021.116993.
[11] M. Holik, M. Živić, Z. Virag, A. Barac, M. Vujanović, and J. Avsec, “Thermo-economic optimization of a Rankine cycle used for waste-heat recovery in biogas cogeneration plants,” Energy Convers. Manag.,Vol.232,No.February,2021,doi: 10.1016/j.enconman.2021.113897.
[12] J. Qu, Y. Feng, Y. Zhu, S. Zhou, and W. Zhang, “Design and thermodynamic analysis of a combined system including steam Rankine cycle, organic Rankine cycle, and power turbine for marine low-speed diesel engine waste heat recovery,” Energy Convers. Manag.,Vol.245,p.114580,2021,doi: 10.1016/j.enconman.2021.114580.
[13] M. G. Civgin and C. Deniz, “Analyzing the dual-loop organic rankine cycle for waste heat recovery of container vessel,” Appl. Therm.Eng.,Vol.199,No.September,p.117512,2021,doi: 10.1016/j.applthermaleng.2021.117512.
[14] F. Z. Aouali, M. Becherif, H. S. Ramadan, M. Emziane, A. Khellaf, and K. Mohammedi, “Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production,” Int. J. Hydrogen Energy, Vol. 42, No. 2, pp. 1366–1374, 2017, doi: 10.1016/j.ijhydene.2016.03.101.
[15] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “A comprehensive review on PEM water electrolysis,” Int. J. Hydrogen Energy, Vol. 38, No. 12, pp. 4901–4934, 2013, doi: 10.1016/j.ijhydene.2013.01.151.
[16] E. Zoulias and E. Varkaraki, “A review on water electrolysis,” Tcjst,Vol.4,No.2,pp.41–71,2004,[Online].Available: http://large.stanford.edu/courses/2012/ph240/jorna1/docs/zoulias.pdf.
[17] K. Onda, T. Kyakuno, K. Hattori, and K. Ito, “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis,” J. Power Sources, Vol. 132, No. 1–2, pp. 64–70, 2004, doi: 10.1016/j.jpowsour.2004.01.046.
[18] S. Rau et al., “Highly Efficient Solar Hydrogen Generation-An Integrated Concept Joining III-V Solar Cells with PEM Electrolysis Cells,” Energy Technol., Vol. 2, No. 1, pp. 43–53, 2014, doi: 10.1002/ente.201300116.
[19] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Electrochemistry modeling of proton exchange membrane (PEM) water electrolysis for hydrogen production,” 16th World Hydrog. Energy Conf. 2006, WHEC 2006, Vol. 1, No. June, pp. 33–39, 2006.
[20] J. H. Yang, Y. Yoon, M. Ryu, S. K. An, J. Shin, and C. J. Lee, “Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system,” Appl. Energy, Vol. 255, No. September, p. 113840, 2019, doi: 10.1016/j.apenergy.2019.113840.
[21] S. Faramarzi, S. M. Mousavi Nainiyan, M. Mafi, and R. Ghasemiasl, “Modification and optimization of an integrated hydrogen liquefaction process with an LNG regasification system,” J. Mech. Eng.,2021,[Online].Available: https://tumechj.tabrizu.ac.ir/article_12868.html.
[22] M. Imran, B. S. Park, H. J. Kim, D. H. Lee, M. Usman, and M. Heo, “Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications,” Energy Convers. Manag., Vol. 87, pp. 107–118, 2014, doi: 10.1016/j.enconman.2014.06.091.
[23] F. Faramarz Ranjbar, Arash Nourbakhsh Saadabad, Mahdi Nami Khaliledeh, Saman Faramarzi, "Simulation, analysis and optimization of a non-emission process producing power, hydrogen gas and liquid hydrogen using solar energy and PEM electrolysis," Journal of Mechanical Engineering, Vol. 02, No. 04, pp. 26–48, 2022.
[24] M.W. Chase, ”Thermochemical Tables,” J. Phys. Chem. Ref. Data Monogr., Vol. 9. p. 1, 1998.
[25] H. Nami, E. Akrami, and F. Ranjbar, “Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis,” Appl. Therm. Eng., Vol. 114, pp. 631–638, 2017, doi: 10.1016/j.applthermaleng.2016.12.018.
[26] H. Kianfard, S. Khalilarya, and S. Jafarmadar, “Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC,” Energy Convers. Manag., Vol. 177,No.September,pp.339–349,2018,doi: 10.1016/j.enconman.2018.09.057.
[27] S. Faramarzi, S. M. Mousavi Nainiyan, M. Mafi, R. Ghasemiasl, Proposing a simultaneous production cycle of liquid natural gas and liquid hydrogen. 2021.
[28] A. Auld, A. Berson, and S. Hogg, “Organic rankine cycles in waste heat recovery: A comparative study,” Int. J. Low-Carbon Technol., Vol. 8, No. 1, pp. 9–18, 2013, doi: 10.1093/ijlct/ctt033.
[29] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant,” Energy Convers. Manag., Vol. 49, No. 10, pp. 2748–2756, 2008, doi: 10.1016/j.enconman.2008.03.018.
[30] S. F. Ranjbar, H. Nami, A. Khorshid, and H. Mohammadpour, “Hydrogen production using waste heat recovery of MATIANT non-emission system via PEM electrolysis,” Modares Mech. Eng., Vol. 16, No.10,pp.42–50,2017,[Online].Available: https://mme.modares.ac.ir/article-15-3305-en.html.
[31] T. J. Kotas, “Exergy Concepts for Thermal Plants.,” Int. J. Heat Fluid Flow, Vol. 2, No. 3, pp. 105–114, 1980, doi: 10.1016/0142 727X(80)90028-4.
[32] B. Kurs and K. Okten, “ScienceDirect Thermodynamic analysis of a Rankine cycle coupled with a concentrated photovoltaic thermal system for hydrogen production by a proton exchange membrane electrolyzer plant,” Vol. 4, 2019, doi: 10.1016/j.ijhydene.2019.07.003.
[33] S. Faramarzi, S. Gharanli, M. Ramazanzade Mohammadi, A. Rahimtabar, Ali J Chamkha, “Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy,” Energy, Vol. 282, 128891, 2023, doi: 10.1016/J.ENERGY.2023.128891.
[34] S. Faramarzi, A. Khavari, “An innovative mixed refrigerant hydrogen liquefaction cycle to store geothermal energy as liquid hydrogen,” J. Energy Storage, 2023, Vol. 72, 108008, doi: 10.1016/j.est.2023.108008.