Temperature control of smartphone batteries using nanocomposites of phase change materials

Document Type : Review Article

Authors

1 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate Professor, Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

10.52547/jrenew.10.2.175

Abstract

Environmental concerns and the scarcity of fossil fuels have led to the rapid development of rechargeable battery technologies. It has been proven that the performance of lithium-ion batteries is susceptible to temperature, and temperature significantly affects the capacity and power of batteries. Therefore, it is necessary to build an efficient battery thermal management system to maintain the battery's operating temperature in a safe range. Utilizing PCM.s can be an exciting option in thermal management systems of lithium-ion batteries, and several studies have been conducted about them. The biggest challenge in PCM-based BTMS systems is to overcome the problems related to the poor thermal conductivity of PCMs. Many researchers in this field proposed different types of metal fins (pinned fins, circular fins, longitudinal fins, and triangular fins), metal foams (aluminum, copper, and nickel foam), metal meshes, and carbon-based nanomaterials to increase the thermal conductivity in PCM-based BTMS systems. Some proposed carbon-based composite nanomaterials are expanded graphite, carbon nanotubes, and carbon fiber. In this article, recent developments and new methods of thermal management and performance optimization of lithium-ion batteries have been reviewed.

Keywords


[1]   Z. Liu, J. Huang, M. Cao, G. Jiang, Q. Yan, and J. Hu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Applied Thermal Engineering, Vol. 185, pp. 116415, 2021.
[2]   R. Yang, R. Xiong, S. Ma, and X. Lin, Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks, Applied Energy, Vol. 260, pp. 114253, 2020.
[3]   L. Zhou, L. He, Y. Zheng, X. Lai, M. Ouyang, and L. Lu, Massive battery pack data compression and reconstruction using a frequency division model in battery management systems, Journal of Energy Storage, Vol. 28, pp. 101252, 2020.
[4]   W. Wu, W. Wu, X. Qiu, and S. Wang, Low‐temperature reversible capacity loss and aging mechanism in lithium‐ion batteries for different discharge profiles, International journal of energy research, Vol. 43, No. 1, pp. 243-253, 2019.
[5]   S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions, International Communications in Heat and Mass Transfer, Vol. 71, pp. 35-43, 2016.
[6]   W. Cao, C. Zhao, Y. Wang, T. Dong, and F. Jiang, Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow, International journal of heat and mass transfer, Vol. 138, pp. 1178-1187, 2019.
[7]   T. Deng, G. Zhang, Y. Ran, and P. Liu, Thermal performance of lithium ion battery pack by using cold plate, Applied Thermal Engineering, Vol. 160, pp. 114088, 2019.
[8]   Z. Liao, S. Zhang, K. Li, G. Zhang, and T. G. Habetler, A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries, Journal of Power Sources, Vol. 436, pp. 226879, 2019.
[9]   S. B. Sanker and R. Baby, Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers, Journal of Energy Storage, Vol. 50, pp. 104606, 2022.
[10] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of power sources, Vol. 208, pp. 210-224, 2012.
[11] A. R. M. Siddique, S. Mahmud, and B. Van Heyst, A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations, Journal of Power Sources, Vol. 401, pp. 224-237, 2018.
[12] D. Bernardi, E. Pawlikowski, and J. Newman, A general energy balance for battery systems, Journal of the electrochemical society, Vol. 132, No. 1, pp. 5, 1985.
[13] W. Gu and C. Wang, Thermal‐electrochemical modeling of battery systems, Journal of The Electrochemical Society, Vol. 147, No. 8, pp. 2910, 2000.
[14] Z. Jiang and Z. Qu, Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study, Applied Energy, Vol. 242, pp. 378-392, 2019.
[15] W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, and Y. Lai, A critical review of battery thermal performance and liquid based battery thermal management, Energy conversion and management, Vol. 182, pp. 262-281, 2019.
[16] K. Chen, W. Wu, F. Yuan, L. Chen, and S. Wang, Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern, Energy, Vol. 167, pp. 781-790, 2019.
[17] M. Shen and Q. Gao, System simulation on refrigerant-based battery thermal management technology for electric vehicles, Energy Conversion and Management, Vol. 203, pp. 112176, 2020.
[18] S. Al Hallaj and J. Selman, A novel thermal management system for electric vehicle batteries using phase‐change material, Journal of the Electrochemical Society, Vol. 147, No. 9, pp. 3231, 2000.
[19] M. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nature Energy, Vol. 3, No. 10, pp. 899-906, 2018.
[20] N. Putra, S. Rawi, M. Amin, E. Kusrini, E. A. Kosasih, and T. M. I. Mahlia, Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage, Journal of Energy Storage, Vol. 21, pp. 32-39, 2019.
[21] M. Amin, N. Putra, E. A. Kosasih, E. Prawiro, R. A. Luanto, and T. Mahlia, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Applied Thermal Engineering, Vol. 112, pp. 273-280, 2017.
[22] Y. Xie, J. Tang, S. Shi, Y. Xing, H. Wu, Z. Hu, and D. Wen, Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials, Energy Conversion and Management, Vol. 154, pp. 562-575, 2017.
[23] Y. Lv, X. Yang, X. Li, G. Zhang, Z. Wang, and C. Yang, Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins, Applied Energy, Vol. 178, pp. 376-382, 2016.
[24] W. Wu, J. Liu, M. Liu, Z. Rao, H. Deng, Q. Wang, X. Qi, and S. Wang, An innovative battery thermal management with thermally induced flexible phase change material, Energy Conversion and Management, Vol. 221, pp. 113145, 2020.
[25] M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, H. S. C. Metselaar, M. S. Naghavi, E. Sadeghinezhad, and A. R. Akhiani, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material, Applied Thermal Engineering, Vol. 61, No. 2, pp. 633-640, 2013.
[26] S. T. Latibari, M. Mehrali, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method, Energy, Vol. 61, pp. 664-672, 2013.
[27] W. Li, Z. Qu, Y. He, and Y. Tao, Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials, Journal of power sources, Vol. 255, pp. 9-15, 2014.
[28] P. Qin, M. Liao, D. Zhang, Y. Liu, J. Sun, and Q. Wang, Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material, Energy Conversion and Management, Vol. 195, pp. 1371-1381, 2019.
[29] J. Li, J. Huang, and M. Cao, Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries, Applied Thermal Engineering, Vol. 131, pp. 660-668, 2018.
[30] Y. Lv, W. Situ, X. Yang, G. Zhang, and Z. Wang, A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management, Energy conversion and management, Vol. 163, pp. 250-259, 2018.
[31] A. Verma, S. Shashidhara, and D. Rakshit, A comparative study on battery thermal management using phase change material (PCM), Thermal Science and Engineering Progress, Vol. 11, pp. 74-83, 2019.
[32] Z. Ling, W. Lin, Z. Zhang, and X. Fang, Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment, Applied Energy, Vol. 259, pp. 114120, 2020.
[33] E. Jiaqiang, D. Han, A. Qiu, H. Zhu, Y. Deng, J. Chen, X. Zhao, W. Zuo, H. Wang, and J. Chen, Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system, Applied Thermal Engineering, Vol. 132, pp. 508-520, 2018.
[34] J. Zhao, Z. Rao, and Y. Li, Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery, Energy conversion and management, Vol. 103, pp. 157-165, 2015.
[35] L. Song, H. Zhang, and C. Yang, Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module, International Journal of Heat and Mass Transfer, Vol. 133, pp. 827-841, 2019.
[36] Z. Rao, Z. Qian, Y. Kuang, and Y. Li, Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface, Applied Thermal Engineering, Vol. 123, pp. 1514-1522, 2017.
[37] A. Awasthi, K. K. Saxena, and V. Arun, Sustainable and smart metal forming manufacturing process, Materials Today: Proceedings, Vol. 44, pp. 2069-2079, 2021.
[38] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, Comparison of Characteristics--Lead Acid, Nickel Based, Lead Crystal and Lithium Based Batteries, in 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), 2015: IEEE, pp. 444-450.
[39] J. Larminie and J. Lowry, Electric vehicle technology explained. John Wiley & Sons, 2012.
[40] N. J. Vickers, Animal communication: when i’m calling you, will you answer too?, Current biology, Vol. 27, No. 14, pp. R713-R715, 2017.
[41] S. Arora, Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies, Journal of Power Sources, Vol. 400, pp. 621-640, 2018.
[42] R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, Journal of power sources, Vol. 113, No. 1, pp. 81-100, 2003.
[43] X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang, and M. Zhang, Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, Journal of power sources, Vol. 255, pp. 294-301, 2014.
[44] M. J. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai, M. J. Lain, Y. Guo, M. Amor-Segan, M. A. Williams, and T. Amietszajew, Looking deeper into the Galaxy (Note 7), Batteries, Vol. 4, No. 1, pp. 3, 2018.
[45] D. H. Doughty and E. P. Roth, A general discussion of Li ion battery safety, The Electrochemical Society Interface, Vol. 21, No. 2, pp. 37, 2012.
[46] Swollen battery? How to remove it. https://www.fixshop.eu/blog-new/swollen-battery-how-remove-it/ (accessed 2022).
[47] G. Alva, Y. Lin, and G. Fang, An overview of thermal energy storage systems, Energy, Vol. 144, pp. 341-378, 2018.
[48] A. Safari, R. Saidur, F. Sulaiman, Y. Xu, and J. Dong, A review on supercooling of Phase Change Materials in thermal energy storage systems, Renewable and Sustainable Energy Reviews, Vol. 70, pp. 905-919, 2017.
[49] G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, and Y. Yang, Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review, Renewable and Sustainable Energy Reviews, Vol. 81, pp. 1771-1786, 2018.
[50] M. Malik, I. Dincer, and M. A. Rosen, Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles, International Journal of Energy Research, Vol. 40, No. 8, pp. 1011-1031, 2016.
[51] Y.-J. Chen, D.-D. Nguyen, M.-Y. Shen, M.-C. Yip, and N.-H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Composites Part A: Applied Science and Manufacturing, Vol. 44, pp. 40-46, 2013.
[52] N. I. Ibrahim, F. A. Al-Sulaiman, S. Rahman, B. S. Yilbas, and A. Z. Sahin, Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review, Renewable and Sustainable Energy Reviews, Vol. 74, pp. 26-50, 2017.
[53] Y. Lin, Y. Jia, G. Alva, and G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable and sustainable energy reviews, Vol. 82, pp. 2730-2742, 2018.
[54] J. Chen, S. Kang, E. Jiaqiang, Z. Huang, K. Wei, B. Zhang, H. Zhu, Y. Deng, F. Zhang, and G. Liao, Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review, Journal of Power Sources, Vol. 442, pp. 227228, 2019.
[55] X. Duan and G. Naterer, Heat transfer in phase change materials for thermal management of electric vehicle battery modules, International Journal of Heat and Mass Transfer, Vol. 53, No. 23-24, pp. 5176-5182, 2010.
[56] Y. Wei and M. Agelin-Chaab, Experimental study of a thermal cooling technique for cylindrical batteries, Journal of Electrochemical Energy Conversion and Storage, Vol. 17, No. 2, 2020.
[57] N. Javani, I. Dincer, and G. Naterer, Numerical modeling of submodule heat transfer with phase change material for thermal management of electric vehicle battery packs, Journal of Thermal Science and Engineering Applications, Vol. 7, No. 3, pp. 031005, 2015.
[58] S. Landini, J. Leworthy, and T. O’Donovan, A review of phase change materials for the thermal management and isothermalisation of lithium-ion cells, Journal of Energy Storage, Vol. 25, pp. 100887, 2019.
[59] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable energy reviews, Vol. 13, No. 2, pp. 318-345, 2009.
[60] S. K. Mohammadian and Y. Zhang, Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles, Journal of Power Sources, Vol. 273, pp. 431-439, 2015.
[61] S. A. Khateeb, S. Amiruddin, M. Farid, J. R. Selman, and S. Al-Hallaj, Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation, Journal of power sources, Vol. 142, No. 1-2, pp. 345-353, 2005.
[62] A. Babapoor, M. Azizi, and G. Karimi, Thermal management of a Li-ion battery using carbon fiber-PCM composites, Applied Thermal Engineering, Vol. 82, pp. 281-290, 2015.
[63] F. Samimi, A. Babapoor, M. Azizi, and G. Karimi, Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers, Energy, Vol. 96, pp. 355-371, 2016.
[64] P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, Journal of Power Sources, Vol. 248, pp. 37-43, 2014.
[65] M. Malik, I. Dincer, M. Rosen, and M. Fowler, Experimental investigation of a new passive thermal management system for a Li-ion battery pack using phase change composite material, Electrochimica Acta, Vol. 257, pp. 345-355, 2017.
[66] M. Kiani, M. Ansari, A. A. Arshadi, E. Houshfar, and M. Ashjaee, Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach, Journal of Thermal Analysis and Calorimetry, Vol. 141, No. 5, pp. 1703-1715, 2020.
[67] B. Mortazavi, H. Yang, F. Mohebbi, G. Cuniberti, and T. Rabczuk, Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation, Applied energy, Vol. 202, pp. 323-334, 2017.
[68] M. Kiani, S. Omiddezyani, E. Houshfar, S. R. Miremadi, M. Ashjaee, and A. M. Nejad, Lithium-ion battery thermal management system with Al2O3/AgO/CuO nanofluids and phase change material, Applied Thermal Engineering, Vol. 180, pp. 115840, 2020.
[69] G. Karimi, M. Azizi, and A. Babapoor, Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites, Journal of Energy Storage, Vol. 8, pp. 168-174, 2016.
[70] A. Haghighi, A. Babapoor, M. Azizi, Z. Javanshir, and H. Ghasemzade, Optimization of the thermal performance of PCM nanocomposites, Journal of Energy Management and Technology, Vol. 4, No. 2, pp. 14-19, 2020.
[71] H. J. Muhr, F. Krumeich, U. P. Schönholzer, F. Bieri, M. Niederberger, L. J. Gauckler, and R. Nesper, Vanadium oxide nanotubes—a new flexible vanadate nanophase, Advanced Materials, Vol. 12, No. 3, pp. 231-234, 2000.
[72] F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, Morphology and topochemical reactions of novel vanadium oxide nanotubes, Journal of the American Chemical Society, Vol. 121, No. 36, pp. 8324-8331, 1999.
[73] G. R. Patzke, F. Krumeich, and R. Nesper, Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology, Angewandte Chemie International Edition, Vol. 41, No. 14, pp. 2446-2461, 2002.
[74] N. Steunou and J. Livage, Rational design of one-dimensional vanadium (v) oxide nanocrystals: an insight into the physico-chemical parameters controlling the crystal structure, morphology and size of particles, CrystEngComm, Vol. 17, No. 36, pp. 6780-6795, 2015.
[75] B.-R. Jia, M.-L. Qin, Z.-L. Zhang, S.-M. Li, D.-Y. Zhang, H.-Y. Wu, L. Zhang, X. Lu, and X.-H. Qu, Hollow Porous VO x/C Nanoscrolls as High-Performance Anodes for Lithium-Ion Batteries, ACS Applied Materials & Interfaces, Vol. 8, No. 39, pp. 25954-25961, 2016.
[76] F. Liu, P. Ning, H. Cao, Z. Li, and Y. Zhang, Solubilities of NH4VO3 in the NH3–NH4+–SO42––Cl––H2O System and Modeling by the Bromley–Zemaitis Equation, Journal of Chemical & Engineering Data, Vol. 58, No. 5, pp. 1321-1328, 2013.
[77] X. Wu, Y. Tao, L. Dong, and J. Hong, Synthesis and characterization of self-assembling (NH 4) 0.5 V 2 O 5 nanowires, Journal of Materials Chemistry, Vol. 14, No. 5, pp. 901-904, 2004.
[78] L. Mai, C. Lao, B. Hu, J. Zhou, Y. Qi, W. Chen, E. Gu, and Z. Wang, Synthesis and electrical transport of single-crystal NH4V3O8 nanobelts, The Journal of Physical Chemistry B, Vol. 110, No. 37, pp. 18138-18141, 2006.