Technical and economical analysis of emerging technologies for production of low thickness solar cell silicon wafers

Document Type : Review Article

Authors

PhD, Research and technology department, Mapna group, Tehran, Iran

Abstract

Polycrystalline silicon wafers are produced by carbothermic reduction of silicon oxides in electric arc furnaces. Leader silicon wafer producer companies use emerging production technologies to reduce the production cost of silicon wafers. These efforts lead to reduce the production cost of silicon wafers by 66%. Emerging technologies for production of kerfless silicon wafers with the low thickness are studied in this paper. Using of these technologies in comparison with the conventional production methods lead to reduce the production cost remarkably. These emerging technologies improved the value chain of silicon wafers of solar cell panels. Conventional methods of silicon wafers manufacturing produce high amount of kerf. Wafers produced with these emerging methods have good technical specifications such as thickness, total thickness variation and mechanical properties. These are drivers of the future of this technology.    

Keywords


[1]     Xakalashe, B.S. and Tangstad, M., Silicon processing: from quartz to crystalline silicon solar cells, Chem Technol, (March), pp.6-9, 2012.
[2]     Van Mierlo, F., Jonczyk, R. and Qian, V., Next generation Direct Wafer® technology delivers low cost, high performance to silicon wafer industry. Energy Procedia, Vol. 130, pp.2-6, 2017.
[3]     Lorenz, A., Kerfless Silicon Precursor Wafer Formed by Rapid Solidification: October 2009-March 2010 (No. NREL/SR-5200-51934). National Renewable Energy Lab. (NREL), Golden, CO (United States), 2011.
[4]     Montgomery, J., 1366 Technologies Opens New Factory. Paves Road to Cheaper Solar PV, RenewableEnergyWorld1, 2013.
[5]     Brailove, A., Kang, S., Fujisaka, A. and Henley, F., First demonstration of high volume manufacturing of kerf-free polymax wafers. In Proc. of the 25th European Photovoltaic Solar Energy Conf (p. 1613), 2010.
[6]     Fujisaka, A., Keeping Pace with Cost Reduction as Module Prices Continue to Decline. Photovoltaics World, pp.38-41, 2010.
[7]     Henley, F., Kang, S., Liu, Z., Tian, L., Wang, J. and Chow, Y.L., June. Beam-induced wafering technology for kerf-free thin PV manufacturing. In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 001718-001723). IEEE, 2009.
[8]     Fujisaka, A., Kang, S., Tian, L., Chow, Y.L. and Belyaev, A., Implant-cleave process enables ultra-thin wafers without kerf loss. Photovoltaics World, pp.21-24, 2011.
[9]     Standard, A.S.T.M., Standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature. Standard ASTM C1499-04, West Conshohocken, 2005.
[10]   Coletti, G., Van Der Borg, N.J.C.M., De Iuliis, S., Tool, C.J.J. and Geerligs, L.J., Mechanical strength of silicon wafers depending on wafer thickness and surface treatment, Vol.  2000, No.80, p.86, 2006.
[11]   SEMI PV Group, PV Technology Roadmap Forum. Germany, June, 2010.
[12]   Dross, F., Milhe, A., Robbelein, J., Gordon, I., Bouchard, P.O., Beaucarne, G. and Poortmans, J., May. Stress-induced lift-off method for kerf-loss-free wafering of ultra-thin (∼ 50 μm) crystalline Si wafers. In 2008 33rd IEEE Photovoltaic Specialists Conference (pp. 1-5). IEEE, 2008.
[13]   Kajari-Schröder, S., Käsewieter, J., Hensen, J. and Brendel, R., Lift-off of free-standing layers in the kerfless porous silicon process. Energy Procedia, Vol. 38, pp.919-925, 2013.
[14]   Li, N., Habuka, H., Ikeda, S.I. and Hara, S., Silicon chemical vapor deposition process using a half-inch silicon wafer for Minimal Manufacturing System. Physics Procedia,Vol. 46, pp.230-238, 2013.
[15]   Nakayashiki, K., Rousaville, B., Yelundur, V., Kim, D.S., Rohatgi, A., Clark-Phelps, R. and Hanoka, J.I., Fabrication and analysis of high-efficiency String Ribbon Si solar cells. Solid-state electronics, Vol 50, pp. 1406-1412, 2006.