Overview of the sustainability of hydrogen resources, production and storage systems and its future

Document Type : Review Article

Author

Chemical and Process Engineering Department, Niroo Research Institute, Tehran, Iran

Abstract

In this study, environmental and sustainability aspects of six sources of hydrogen production (biomass, geothermal, hydro, nuclear, solar and wind), four systems of hydrogen production (biological, electrical, photonic and thermal) and five sources of hydrogen storage (chemical hydrides, compressed gas, cryogenic liquids, metal hydrides and nanomaterials) are compared. Five sustainability criteria (economic, environmental, social and technical dimensions and reliability) and four environmental performance criteria (greenhouse gas emissions, land use, water dischaqrge quality and solid waste generation) of the selected options are ranged from 0 to 10 points, where 10 indicates the best and 0 weak indicates the lowest performance. From the sustainability point of view, solar and geothermal sources, with ratings of 7.4 and 4.6, have the highest and lowest performances, respectively. Electrical and photonic systems with 7.6 and 5.4 points have the highest and lowest performances in hydrogen production, respectively. Nanomaterials and cryogenic liquids with 8.4 and 3.4 points have the highest and lowest performances in hydrogen, respectively. Electrical hydrogen production based on solar energy according with the nanomaterial storage system are the most sustainable and best options from the environmental point of view.

Keywords


[1] S. Dutta,. A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem., Vol. 20, No. 9, pp. 1148-1156, 2014.
[2] E. Shafiei, B. Davidsdottir, J. Leaver, H. Stefansson, E.I., Asgeirsson, Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a  simulation-based  comparison  between  hydrogen  and electricity, J. Clean. Prod., Vol. 141, pp. 237-247,2017.
[3] F. Zhang, P. Zhao, M. Niu, J. Maddy, The survey of key technologies in hydrogen energy storage, Int. J. Hydrog. Energy, Vol. 41, No. 33, pp. 14535-14552, 2016.
[4] Y. Bicer, I. Dincer, C. Zamfirescu, G. Vezina, F. Raso, Comparative life cycle assessment of various ammonia production methods. J. Clean. Prod., Vol. 135, 1379-1395, 2016.
[5] S. Sharma, S. K. Ghoshal, Hydrogen the future transportation fuel: from production to applications, Renew. Sustain. Energy Rev., Vol. 43, 1151-1158, 2015.
[6] S. E. Hosseini, M. A. Wahid, M. M. Jamil, A .A. Azli, M. F. Misbah, A review on biomass-based hydrogen production for renewable energy supply, Int. J. Energy Res., Vol. 39, No. 12, 1597-1615, 2015.
[7] G. Sethia, , A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage, Carbon, Vol. 99, 289-294, 2016.
[8] M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, A comparative technoeconomic analysis of renewable hydrogen production using solar energy, Energy Environ. Sci., Vol. 9 (7), 2354-2371, 2016.
[9] L. Gradisher, B. Dutcher, M. Fan, Catalytic hydrogen production from fossil fuels via the water gas shift reaction, Appl. Energy, Vol. 139, 335-349, 2015.
[10] B. Nastasi, G. L. Basso, Hydrogen to link heat and electricity in the transition towards future smart energy systems, Energy, Vol. 110, 5-22, 2016.
[11] F. Yilmaz, M. T. Balta, R. Selbas , A review of solar based hydrogen production methods, Renew. Sustain. Energy Rev., Vol. 56, 171-178, 2016.
[12] M. Z. Bundhoo, R. Mohee, Inhibition of dark fermentative bio-hydrogen production: a review, Int. J. Hydrog. Energy, Vol. 41, No. 16, 6713-6733, 2016.
[13] A. Asghar, A. A. A. Raman, W. M. A. W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Clean. Prod., Vol. 87, 826-838, 2015.
[14] L. F. Chanchetti, S. M. O. Diaz, D. H. Milanez, D. R. Leiva, L. I. L. de Faria, T. T. Ishikawa, Technological forecasting of hydrogen storage materials using patent indicators, Int. J. Hydrog. Energy, Vol. 41, No. 41, 18301-18310, 2016.
[15] Y. Van  Fan,  S. Perry, J. J. Klemeˇs,  C. T. Lee,  A  review on  air  emissions  assessment: transportation, J. Clean. Prod., Vol. 194, 673-684, 2018. 
[16] S. H. Siyal, D. Mentis,  U.  Mo€rtberg, S. R.  Samo, M.  Howells, A  preliminary assessment of wind generated hydrogen production potential to reduce the gasoline fuel used in road transport sector of Sweden, Int. J. Hydrog. Energy, Vol. 40, No. 20, 6501-6511, 2015. 
[17] P. Maniatopoulos, J. Andrews, B. Shabani, Towards a sustainable strategy for road transportation in Australia: the potential contribution of hydrogen, Renew. Sustain. Energy Rev., Vol. 52, 24-34, 2015.
[18] B. Fais, N. Sabio, N. Strachan, The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and  renewable  targets, Appl. Energy, Vol. 162, 699-712, 2016.
[19] H. Schandl, S.  Hatfield-Dodds,  T.  Wiedmann,  A.  Geschke,  Y.  Cai,  J. West,  D. Newth, T. Baynes, M. Lenzen, A. Owen, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod., Vol. 132, 45-56, 2016.
[20] S. Sorrell, Reducing energy demand: a review of issues, challenges and approaches, Renew. Sustain. Energy Rev., Vol. 47, 74-82, 2015.
[21] M. Schulze, H. Nehler, M. Ottosson, P. Thollander, Energy management in industryea systematic review of previous findings and an  integrative  concep- tual framework, J. Clean. Prod., Vol. 112, 3692-3708, 2016.
[22] A. Bakenne, W. Nuttall, N. Kazantzis, Sankey-Diagram-based  insights  into the hydrogen economy of today, Int. J. Hydrog. Energy, Vol. 41, No. 19, 7744-7753, 2016.
[23] M. Ball, M. Weeda, The hydrogen economyeVision or reality?, Int. J. Hydrog. Energy, Vol. 40, No. 25, 7903-7919, 2015.
[24] P. Kuntke, M. Rodríguez Arredondo, L. Widyakristi, A. ter Heijne, T. H. Sleutels, H. V. Hamelers, C. J. Buisman, Hydrogen gas recycling for energy efficient ammonia recovery in electrochemical systems, Environ. Sci. Technol, Vol. 51, No. 5, 3110-3116, 2017.
[25] I. Yarbrough, Q. Sun, D. C. Reeves, K. Hackman, R. Bennett, D. S. Henshel, Visualizing building energy demand for building peak energy analysis, Energy Build., Vol. 91, 10-15, 2015.
[26] C. F. Reinhart, C. C. Davila, Urban building energy modelingeA review of a nascent field, Build. Environ., Vol. 97, 196-202, 2016.
[27] C. Delmastro, F. Martinsson, G. Mutani, S. P. Corgnati, Modeling building energy demand profiles and district heating networks for low carbon  urban  areas, Procedia Eng., Vol. 198, 386-397, 2017.
[28] P. S. Wong, A. Lindsay, L. Crameri, S. Holdsworth, Can energy efficiency  rating and carbon accounting foster greener building design decision? An empirical study, Build. Environ., Vol. 87, 255-264, 2015.
[29] M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. Dai, A mini review on nickel- based electrocatalysts for alkaline hydrogen evolution reaction, Nano Res., Vol. 9, No. 1, 28-46, 2016.
[30] V. Chintala, K. A. Subramanian, Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode, Energy, Vol. 87, 448-462, 2015.
[31] S. B. Walker, U. Mukherjee, M. Fowler, A. Elkamel, Benchmarking and selection of Power-to-Gas utilizing electrolytic hydrogen as an energy storage alternative, Int. J. Hydrog. Energy, Vol. 41, No. 19, 7717-7731, 2016.