تاثیر کاربرد گرافن به عنوان ماده الکترودی بر بازده سلول ‌های خورشیدی پلیمری

نوع مقاله: علمی-ترویجی

نویسندگان

1 دانشجوی دکترا، شیمی کاربردی، دانشگاه صنعتی امیرکبیر، تهران

2 استادیار، شیمی تجزیه (الکتروشیمی)، دانشگاه صنعتی امیرکبیر، تهران تهران، صندوق پستی 4413- 15875، leilanaji@aut.ac.ir

3 دانشیار، فیزیک، دانشگاه صنعتی امیرکبیر، تهران

چکیده

تولید انرژی با استفاده از پدیده‌ی فتوولتایی در سلول­‌های خورشیدی می­تواند از میزان وابستگی ما به سوخت­‌های فسیلی و تولید گاز‌های گلخانه­ای بکاهد.  سلول­‌های خورشیدی پلیمری در مقایسه با سایر انواع سلول­‌های خورشیدی، اگر چه راندمان تبدیل انرژی پایین تری دارند اما دارای مزایایی چون وزن کم، انعطاف پذیری و ضریب جذب بالا هستند و فرآیند‌های مربوط به تهیه‌ی آن‌ها نسبت به سلول ‌های خورشیدی سیلیکونی از هزینه‌ی کمتری برخوردار است. این دستگاه ‌ها از سه جزء اصلی فوتوآند، لایه‌ی فعال و کاتد تشکیل شده اند. فوتوآند اولین جزء در تماس با نور خورشید است. این لایه باید تا حد امکان شفاف باشد؛‌ بگونه ای که در ناحیه‌ی مرئی فاقد جذب بوده تا بتواند بیشتر تابش فرودی را از خود عبور دهد. همچنین از هدایت الکتریکی بالا و مقاومت پایینی برخوردار باشد. فوتوآند باید دارای تابع کار بالا باشد تا بتواند حفرات تولید شده توسط لایه‌ی فعال را بطور مطلوبی جمع آوری نماید.کاتد نیز بایستی از هدایت الکتریکی بالا و تابع کار پایین برای جمع آوری الکترون ‌ها برخوردار باشد. در این مقاله‌ی مروری به معرفی گرافن، خواص فیزیکی و تاثیر به کارگیری آن در راندمان سلول ‌های خورشیدی پلیمری پرداخته شده است. همچنین مقایسه­ای میان بازده تولید انرژی سلول­‌های خورشیدی با الکترود گرافنی و سلول­های خورشیدی با الکترود معمول و متداول ایندیوم قلع اکساید (ITO)، صورت گرفته است.

کلیدواژه‌ها


 

[1]           N. S. Allen, Photochemistry and Photophysics of Polymeric Materials: John Wiley & Sons, 2010.

[2]           H. Assender and A. Barkhouse, "Photovoltaic Polymer Materials," Photochemistry and Photophysics of Polymeric Materials, p. 271, 2010.

[3]           J. Bernede, "Organic photovoltaic cells: history, principle and techniques," Journal of the Chilean Chemical Society, vol. 53, pp. 1549-1564, 2008.

[4]           B. R. Saunders and M. L. Turner, "Nanoparticle–polymer photovoltaic cells," Advances in colloid and interface science, vol. 138, pp. 1-23, 2008.

[5]           Y. Sun, W. Zhang, H. Chi, Y. Liu, C. L. Hou, and D. Fang, "Recent development of graphene materials applied in polymer solar cell," Renewable and Sustainable Energy Reviews, vol. 43, pp. 973-980, 2015.

[6]           T. L. Benanti and D. Venkataraman, "Organic solar cells: An overview focusing on active layer morphology," Photosynthesis research, vol. 87, pp. 73-81, 2006.

[7]           C.-T. Lee and C.-H. Lee, "Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT: PCBM: pentacene active layer," Organic Electronics, vol. 14, pp. 2046-2050, 2013.

[8]           L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes," ACS nano, vol. 4, pp. 2955-2963, 2010.

[9]           H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films," Journal of the American Chemical Society, vol. 129, pp. 7758-7759, 2007.

[10]         S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology, vol. 5, pp. 574-578, 2010.

[11]         S. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. D. Van Der Gon, W. R. Salaneck, and M. Fahlman, "The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films," Synthetic Metals, vol. 139, pp. 1-10, 2003.

[12]         A. Manzano-Ramírez, E. J. López-Naranjo, W. Soboyejo, Y. Meas-Vong, and B. Vilquin, "A Review on the Efficiency of Graphene-Based BHJ Organic Solar Cells," Journal of Nanomaterials, vol. 2015, p. 1, 2015.

[13]         Z. Zhuo, F. Zhang, J. Wang, J. Wang, X. Xu, Z. Xu, Y. Wang, and W. Tang, "Efficiency improvement of polymer solar cells by iodine doping," Solid-State Electronics, vol. 63, pp. 83-88, 2011.

[14]         S. Günes, H. Neugebauer, and N. S. Sariciftci, "Conjugated polymer-based organic solar cells," Chemical Reviews, vol. 107, pp. 1324-1338, 2007.

[15]         B. C. Thompson and J. M. Frechet, "Polymer–fullerene composite solar cells," Angewandte chemie international edition, vol. 47, pp. 58-77, 2008.

[16]         G. Li, R. Zhu, and Y. Yang, "Polymer solar cells," Nature Photonics, vol. 6, pp. 153-161, 2012.

[17]         W. C. Choy, Organic Solar Cells: Springer, 2013.

[18]         R. Po, C. Carbonera, A. Bernardi, F. Tinti, and N. Camaioni, "Polymer-and carbon-based electrodes for polymer solar cells: toward low-cost, continuous fabrication over large area," Solar Energy Materials and Solar Cells, vol. 100, pp. 97-114, 2012.

[19]         H. Kim, C. Gilmore, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices," Journal of Applied Physics, vol. 86, pp. 6451-6461, 1999.

[20]         Z. Liu, S. P. Lau, and F. Yan, "Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing," Chemical Society Reviews, 2015.

[21]         M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, "p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells," Proceedings of the National Academy of Sciences, vol. 105, pp. 2783-2787, 2008.

[22]         N. Espinosa, R. Garcia-Valverde, A. Urbina, and F. C. Krebs, "A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions," Solar Energy Materials and Solar Cells, vol. 95, pp. 1293-1302, 2011.

[23]         D. Angmo and F. C. Krebs, "Flexible ITO‐free polymer solar cells," Journal of Applied Polymer Science, vol. 129, pp. 1-14, 2013.

[24]         X. Wang, L. Zhi, N. Tsao, Ž. Tomović, J. Li, and K. Müllen, "Transparent carbon films as electrodes in organic solar cells," Angewandte chemie, vol. 120, pp. 3032-3034, 2008.

[25]         Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, "Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices," Applied Physics Letters, vol. 95, p. 063302, 2009.

[26]         Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan, Y. Ma, and Y. Chen, "Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting," Carbon, vol. 48, pp. 3308-3311, 2010.

[27]         Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, "Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes," ACS nano, vol. 4, pp. 5263-5268, 2010.

[28]         L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano, vol. 4, pp. 2865-2873, 2010.

[29]         M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W.-K. Hong, M.-J. Seong, Y. H. Kahng, and K. Lee, "Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes," Organic Electronics, vol. 11, pp. 1864-1869, 2010.

[30]         J. Geng, L. Liu, S. B. Yang, S.-C. Youn, D. W. Kim, J.-S. Lee, J.-K. Choi, and H.-T. Jung, "A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension," The Journal of Physical Chemistry C, vol. 114, pp. 14433-14440, 2010.

[31]         Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, "Interface Engineering of Layer‐by‐Layer Stacked Graphene Anodes for High‐Performance Organic Solar Cells," Advanced Materials, vol. 23, pp. 1514-1518, 2011.

[32]         Y. U. Jung, S.-I. Na, H.-K. Kim, and S. J. Kang, "Organic photovoltaic devices with low resistance multilayer graphene transparent electrodes," Journal of Vacuum Science & Technology A, vol. 30, p. 050604, 2012.

[33]         Y.-Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, "Multilayer graphene films as transparent electrodes for organic photovoltaic devices," Solar Energy Materials and Solar Cells, vol. 96, pp. 281-285, 2012.

[34]         Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, "Organic photovoltaic devices based on a novel acceptor material: graphene," Advanced Materials, vol. 20, pp. 3924-3930, 2008.

[35]         G. Jo, S.-I. Na, S.-H. Oh, S. Lee, T.-S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, and D.-Y. Kim, "Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure," Applied Physics Letters, vol. 97, p. 213301, 2010.

[36]         Y.-Y. Lee, K.-H. Tu, C.-C. Yu, S.-S. Li, J.-Y. Hwang, C.-C. Lin, K.-H. Chen, L.-C. Chen, H.-L. Chen, and C.-W. Chen, "Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method," ACS nano, vol. 5, pp. 6564-6570, 2011.

[37]         M. Cox, A. Gorodetsky, B. Kim, K. S. Kim, Z. Jia, P. Kim, C. Nuckolls, and I. Kymissis, "Single-layer graphene cathodes for organic photovoltaics," Applied Physics Letters, vol. 98, p. 123303, 2011.

[38]         J.-H. Huang, J.-H. Fang, C.-C. Liu, and C.-W. Chu, "Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics," Acs Nano, vol. 5, pp. 6262-6271, 2011.

[39]         Z. Liu, J. Li, Z.-H. Sun, G. Tai, S.-P. Lau, and F. Yan, "The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells," ACS nano, vol. 6, pp. 810-818, 2011.

[40]         T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, "Anomalous bond of monolayer graphite on transition-metal carbide surfaces," Physical review letters, vol. 64, p. 768, 1990.

[41]         K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.

[42]         C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.

[43]         C. Zhang and T. Liu, "A review on hybridization modification of graphene and its polymer nanocomposites," Chinese Science Bulletin, vol. 57, pp. 3010-3021, 2012.

[44]         X. Wan, Y. Huang, and Y. Chen, "Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale," Accounts of chemical research, vol. 45, pp. 598-607, 2012.

[45]         D. R. Dreyer, R. S. Ruoff, and C. W. Bielawski, "From conception to realization: an historial account of graphene and some perspectives for its future," Angewandte Chemie International Edition, vol. 49, pp. 9336-9344, 2010.

[46]         J. Zhu, M. Chen, Q. He, L. Shao, S. Wei, and Z. Guo, "An overview of the engineered graphene nanostructures and nanocomposites," Rsc Advances, vol. 3, pp. 22790-22824, 2013.

[47]         Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: synthesis, properties, and applications," Advanced Materials, vol. 22, pp. 3906-3924, 2010.