Different generation solar cell technologies (evaluation and comparison)

Document Type : Review Article

Authors

1 Assistant Professor, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.

2 M.Sc. Student, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.

3 B.Sc. Student, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.

Abstract

Solar energy is one of the best possible solutions that can be applied as renewable energy resources. In recent years, few technologies are used for manufacturing of solar cells. In the first-generation solar cell is mainly made by crystalline silicon wafer with 300-400 um thickness. In the second and third technologies fabrication of solar cells is based on the deposition of semiconductors on the glass, metal or polymer substrates. The thickness of these coating is around 3-5 um. The cost of raw materials in second and third technologies is less than the first generation. Moreover, the size of these solar cells is approximately 100 times larger than the first one. It should be noted that the efficiency of the first generation in comparison to the other technologies are high due to the high quality raw materials which are used in the fabrication. It is expected that the differences between the efficiency of these for technologies will be decreased by the time and other technologies will be replaced by the first generation. In this research, the structure of different technologies has been studied and the possible methods for improvement of the solar cells efficiency have been introduced.

Keywords


[1]               H .Imahori,T .Umeyama, S .Ito, “Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells”, Accounts. Chem. Res,Vol. 42, pp. 1809-1818, 2009.
[2]               N .Asim, K .Sopian, Sh .Ahmadi, K .Saeedfar, M.A .Alghl, O . Saadatian, S .Zaidi, “A review on the role of materials science in solar cells”, Renew. Sust. Energ. Rev, Vol. 21, pp. 421-431, 2013. [3]  Sh .Liu, X. Niu., W. Shan, W. Lu, J. Zheng, Y. Li, H. Duan., W. Quan, W. ZhiHan, C.R. Wronski., D. Yang, “Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing”, Energy. Mater. Sol. Cells, Vol.127, pp. 21-26, 2014.
[4]               M. Olivia., “Fundamentals of  photovoltaic materials”, National Solar Power Reasearch Institute, 1998.
[5]               P. Chen., X. Yu., L. Chen, D. Yang., “Formation of  shallow  junctions in gallium and phosphorus compensated silicon for cell performance improvement”, Scr. Mater, Vol.65, pp. 871-874, 2011. [6] R. M. Swanson., “Approaching the 29% limit efficiency of silicon solar cells”, conference record of the thirty-first IEEE,  pp. 889-894, 2005.
[7]               F. Torregrosa, C. Laviron, H. Faik, D. Barakel, F. Milesi, S. Beccaccia, “Realization of ultra shallow junctions by PIII: application to solar cells”, Surf. Coat. Technol, Vol.186, pp. 93-98, 2004.
[8]               M A. Green, J. Hansen, “crystalline silicon solar cells”, photovoltatics special research centre, Chapter 4, university of new south wales, Sydney,2001. 
[9]               M. A.  Green, “Catalogue photovoltaic drawings”, photovoltatics special research centre, university of new south wales, Sydney,1998. [10] M. Abbott, J. R. Cotter, “Optical and electrical properties of laser texturing for high efficiency solar cells”, Prog. Photovolt, Vol.14, pp. 225-235, 2006.
[11]             S. Wagner, D. Carlson, H. Branz, “Amorphous and microcrystalline silicon solar cells”, To be presented at the Electrochemical Society International Symposium Seattle, pp. 538-552, 1999.
[12]             G. Zheng,  L. Xu, M. Lai, Y. Chen, L. Liu,  X. Li,  “Enhancement of optical absorption in amorphous silicon thin film solar cells with periodical nanorods to increase optical path length”, Sol. Energy, Vol.63, pp. 690-701, 2012.
[13] J. Yang, A. Banerjee, S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies”, Appl. Phys. Lett, vol.70, pp.2975-2985, 1997.
[14] CH. Xiao, X. Yu n, D. Yang, D. Que, “Impact of solar  irradiance intensity and  temperature on the performance of compensated crystalline silicon solar cells”, Sol. Energy, vol. 80, pp. 650-667, 2013.
[15] A. Terakaw, “Reviewofthin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo”, Energy. Mater. Sol. Cells, Vol.50, pp. 441-444, 2013.
[16] I. Dharmadasa, “Latest developments in CdTe, CuInGa(Se)2 and GaAs/AlGaAs thin film PV solar cells”, Curr. Appl. Phys, Vol.9, pp. 72–86 , 2009.
[17] M. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost” , Prog.Photovolt, Vol. 9, pp.123-135, 2001.
[18] A. Luque, A. Marti, “Ametallicin termediateb and high efficiency solar cell”, Prog. Photovolt, Vol.9, pp.73-86, 2001.
[19] Y. Makableh, R. Vasan, J. Sarker, A. Nusir, S. Seal, M. Manasreh, “Enhancement of GaAs solar cell performance by using a ZnO sol–gel anti-reflection coating”, Energy. Mater. Sol. Cells, Vol.123, pp. 178-182, 2014.
[20] T. Wada, N. Kohara, T. Negami, M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2 / Mo interface in Cu(In,Ga)Se2 solar cells”, J. Appl. Phys, Vol. 35, pp. 1253-1256, 1996. [21] A. Goetzberge, C. Hebling, H. W. Schock, “Photovoltaic materials, history, status and outlook”, Mater. Sci. Eng, Vol.40, pp. 1-46, 2003.
[22] D. Desai. S. Hegedus, B. McCandless, R. Birkmire, K. Dobson, D. Ryan, “How CDTE solar cells operate: determining collection using bifacial device character- ization. Photovoltaic energy conversion”, In: Proceedings of the conference record of the IEEE fourth world conference, pp. 368-371, 2006.
[23] J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic photovoltaic cells”, Nat. Nanotechnol, Vol. 6, pp. 568-572, 2011.
[24] T. Todorov, O. Gunawan, S. J. Chey, T. G. de Monsabert, A. Prabhakar, D. B. Mitzi, “Progress towards marketable earth-abundant chalcogenide solar cells”, Thin. Solid. Films, Vol. 519, pp. 7378-7381, 2011.
[25] D. Guimard, P. Grand, N. Bodereau, P. Cowache, J. F. Guillemoles, D. Lincot, “Copper indium diselenide solar cells prepared by electrodeposition”, In: Proceedings of the photovoltaic specialists conference ,conference record of the twenty-ninth IEEE, pp. 692-695, 2002.
[26] A. Romeo, M. Terheggen, D. Abou-Ras, D. Ba¨tzner, F. Haug, M. Ka¨lin, D. Rudmann, A. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells progress in photovoltaic: research and applications”, Prog. Photovolt. Res. Appl, Vol.12, pp.93-111, 2004.
[27] G. Gordillo, C. Calderon, “CIS thin film solar cells with evaporated InSe buffer layers”, Energy. Mater. Sol. Cells, Vol. 77, pp. 163–173, 2003.
[28] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Sol. Energy, Vol.77, pp. 803-814, 2010.
[29] N. Romeo, A. Bosio, V. Canevari, A. Podesta, “Recent progress on CdTe/CdS thin film solar cells”, Sol. Energy, Vol.77, pp. 713-720, 2007.
[30] B. ORegan, M. Gra¨tzel, “A low-cost, high-efficiency solar-cell based on dye sensitized colloidal TiO2 films”, Nature, Vol. 353, pp. 737740, 1991.
[31] I. Chung, B. Lee, J. He, R. PH. Chang, M. G. Kanatzidis, “Allsolid-state dye-sensitized solar cells with high efficiency”, Nature, Vol. 485, pp. 486-489, 2012.
[32] B. Basheer, D. Mathew, B. George, R. Nair,“An overview on the spectrum of sensitizers: The heart of dye sensitized solar cells”, Sol. Energy, Vol. 108, pp. 479-507, 2014.
[33] K. Pettersso, H. Pettersson, “Dye-Sensitized Solar Cells” , Anders. Chem. Rev, Vol. 110, pp. 6595–6663, 2010.
[34] S. Sheehan, “Flexible glass substrate based dye sensitized solar cells”, Energy. Mater. Sol. Cells, Vol. 132, pp. 237-244, 2015. [35] A. Amala Rani, S. Ernest, “Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for dye-sensitized solar cell application”, Method. Enzymol, Vol.
67, pp. 398-408, 2014.
[36] K. Hara, H. Arakawa, A. Luque, S. Hegedus, “Handbook of photovoltaic science and engineering (Chapter 15: Dye-sensitized Solar Cells)”, 2003.
[37] A. Shalan, M. Rasly, I. Osama, M. Rashad, I. Ibrahim, “Photocurrent enhancement by Ni2+ and Zn2+ ion doped in SnO2 nanoparticles in highly porous dye-sensitized solar cells” ,Ceramics. International, Vol.40, pp. 11619-11626, 2014.
[38] N. Yang, “Two-dimensional grapheme bridges enhanced photoinduced charge transport in dye_sensitized solar cells” ,ACS. Nano, Vol. 42, pp. 887-894, 2010.
[39] V. Fthenakis, “Sustainability of photovoltaics: the case for thin-film solar cells”, Renew.Sust. Energ. Rev, Vol. 13, pp. 2746-2750, 2009. [40] Q. Wang, S. M. Zakeeruddin, M. K. Nazeeruddin, R. HumphryBaker, M. Gra¨tzel, “Molecular wiring of nanocrystals: NCS-enhanced cross-surface charge transfer in self-assembled Ru-complex monolayer on mesoscopic oxide films”, J. Am. Chem, Vol.128, pp. 4446-4457, 2006.
[41] K. Daibin, K. Cedric, S. Henry, H. Baker, R. Zakeeruddin, M. Shaik, M. Gra¨tzel, “A new ion coordinating ruthenium sensitizer for mesoscopic dye-sensitized solar cells”, Inorg. Chim. Acta, Vol. 361, pp. 699-709, 2008.
[42] ] L. Yang, W. W. F. Leung, J. Wang, “Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer”, Nanoscale, Vol. 5, pp.7493-7498, 2013.
[43] X. Zu., Y. Gui, Y. Jiang, X. Ai , H. Yang, Y. Cao, “Organic alloy electrolytes for thermostable solid-state dye-sensitized solar cells”, Electrochimica. Acta, Vol. 147, pp. 535-539, 2014.
[44] K. Kim, M. Lee, H. Kim, G. Lim, Y. Choi, N. Park, K Kim, W. Lee, “Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres”, Adv. Mater, Vol. 21, pp.3668-3673, 2009.
[45] H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, “Solid-state composite electrolyte Lil/3-hydroxy propionitrile/SiO2 for dye-sensitized solar cells”, J. Am. Chem. Soc, Vol. 127, pp. 6394-6401, 2005.
[46] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, T. Satot, “An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4vinyl-pyridine iodide) electrolyte with efficiency of 5.64%” , J. Am. Chem. Soc, Vol. 130 , pp. 140-148, 2008.
[47] P. Wang, S. Zakeeruddin, J. Moser, M. Nazeeruddin, T. Sekiguchi, M. Gratzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphi-philic ruthenium sensitizer and polymer gel electrolyte”, Nat. Mater, Vol. 2, pp. 402-407, 2003.
[48] K. Chen, C. Liu, C. Hsieh, C. Lin, K. Huang, C. Tsai, F. Chen, “New fabrication process of long-life dye-sensitized solar cells by in situ gelation of quasi-solid polymer electrolytes”, J. Power .Sources, Vol.
247 , pp. 939- 946, 2014.
[49] R. Dong, S. Shen, H. Chen, C. Wang, P. Shih, C. Liu, R. Vittal, J. Lin, K. Ho,” A novel polymer gel electrolyte for highly efficient dyesensitized solar cells”, J. Mater. Chem, Vol. 1, pp. 8471-8478, 2013. [50] U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature , Vol. 395, pp. 583-585, 1998.
[51] C. Zafer, N. Karapire, S. Sariciftci, S. Icli, “Characterization of N,N '-bis-2-(1- hydoxy-4-methylpentyl)-3,4,9,10-perylene bis (dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors”, Energy. Mater. Sol. Cells, Vol. 88, pp. 11-21, 2005.
[52] S. Zakeeruddin, M. Gratzel, “Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells”, Adv. Funct. Mater, Vol. 19, pp. 2187-2202, 2009.
[53] N. Jeon, D. Hwang, Y. Kang, S. Im, D. Kim, “Quasi-solid-state dye- sensitized solar cells assembled with polymeric ionic liquid and poly(3,4- ethylenedioxythiophene) counter electrode”, Electrochem.
Commun, Vol. 34, pp. 1-4, 2013.
[54] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. Zakeeruddin, M. Gratzel., “Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids”, J. Phys. Chem. A, Vol. 111 , pp. 6550-6560, 2007.
[55] P. Wang, Q. Dai, S. Zakeeruddin, M. Forsyth, D. MacFarlane, M. Gratzel, “Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar CeN”, J. Am. Chem. Soc, Vol.126, pp. 13590-13591, 2004.
[56] Q. Dai, D. MacFarlane, P. Howlett, M. Forsyth, “Rapid I-/I-3 diffusion in a molecular-plastic-crystal electrolyte for potential application in solid-state photoelectrochemical cells”, Angew. Chem .Int.
Edit, Vol.44, pp. 313-316, 2005.
[57] D. Hwang, D. Kim, S. Jo, V. Armel, D. MacFarlane, D. Kim, S. Jang, “Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells”, Sci. Rep, Vol. 3, pp. 303-308, 2013.
[58] Y. Jiang, Y. Cao, P. Liu, J. Qian, H. Yang, “Plastic-polymer composite electrolytes for solid state dye-sensitized solar cells”, Electrochimica. Acta, Vol. 55, pp. 6415-6419, 2010.
[59] J. Gong, K. Sumathy, J. Liang, “Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells” , Renew.Sust. Energ. Rev, Vol. 59, pp. 419-423, 2012.
[60] V. Dao, Y. Choi, K. Yong, L. Larina, O. Shevaleevskiy, H. Choi, “A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells”, J.
Power .Sources, Vol. 274, pp. 831-838, 2015.
[61] V. Dao, L. Larina, J. Lee, K. Jung, B. Huy, H. Choi, “Graphenebased RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells” , Carbon, Vol. 82, pp. 895-905, 2014.
[62] H. Hoshi , Sh. Tanaka, T. Miyoshi, “Pt-graphene electrodes for dye-sensitized solar cells” , Mater. Sci. Eng, Vol. 190, pp. 47-51, 2014.
[63] G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, “Review of materials and manufacturing options for large area flexible dye solar cells”, Renew.Sust. Energ. Rev, Vol. 15, pp. 3717-3732, 2011.
[64] J. Yoon, D. K. Kang, J. Won, J. Y. Park, Y. S. Kang, “Dye-
sensitized solar cells using ion-gel electrolytes for long-term stability”, J.
Power Sources, Vol. 201, pp. 395-401, 2012.
[65] E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. M. Smilgies, “A bicontinuous double gyroid hybrid solar cell”, Nano. Lett, Vol. 9, pp. 2807-2812, 2009.
[66] M. J. Kim, Y. J. Yu, J. H. Kim, Y. S. Jung, K. Y. Kay, S. B. Ko, “Tuning of spacer groups in organic dyes for efficient inhibition of charge recombination in dye-sensitized solar cells”, Dyes. Pigments, Vol.
95, pp. 134-41, 2012.
[67] M. R. Narayan, “Review: dye sensitized solar cells based on natural photo- sensitizers”, Renew.Sust. Energ. Rev, Vol. 25, pp. 3525-3539, 2011.
[68] M. Stella, “Study of organic semiconductors for device applications” , Barcelona, Ph.D. Thesis, 2009.
[69] H. S. Nalwa, “Handbook of organic conductive molecules and polymers”, Vol. 1–4, Wiley, 1997.
[70] G. Hadziioannou, P. F. van Hutten, “Semiconducting polymers”, Vol. 1. Wiley-VCH, 2000.
[71] T. A. Skotheim, J. R. Reynolds, “Handbook of conducting polymers”, Vol. 1–2, 2006.
[72] H. Hoppe , N. Serdar Sariciftc, “ Polymer Solar Cells”, Adv. Polym. Sci , Vol. 214, pp. 1-86, 2008.
[73] M. D. Mcgehee, E. K. Miller, D. Moses, A. J. Heeger, P. Bernier, S. Lefrant, G. Bidan, “Advances in synthetic metals: twenty years of progress in science and technology”, Elsevier, vol. 98, 1999.
[74] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: a review of recent advances IBM”, J. Res. Dev, Vol. 45, pp. 11-16, 2001.
[75] H. Hoppe, N. Arnold, D. Meissner, “Sariciftci NS Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells", Sol. Energy. Mater. Sol. Cells, Vol. 80, pp. 105-111, 2003.
[76] H. Hoppe, N. S. Sariciftci, "Organic solar cells: an overview", J. Mater. Res, Vol. 19, pp. 1924-1930,2004.
[77] I. Montanari, A. F. Nogueira, J. Nelson, J. R. Durrant, C. Winder, M. A. Loi, N. S. Sariciftci, C. J. Brabec, "Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature", Appl. Phys. Lett, Vol. 81, pp. 3001-3010, 2001.
[78] A. F. Nogueira, I. Montari, J. Nelson, J. R. Durrant, C. Winder, N. S. Sariciftci, C. Sariciftci, "Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy", J. Phys. Chem. B, Vol. 107, pp. 1567-1573, 2003.
[79] J. Nelson, "Diffusion-limited recombination in polymer—fullerene blends and its influence on photocurrent collection", Phys. Rev. B , Vol. 67, pp. 155-209, 2003.
[80] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld- Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers", Nature, Vol. 401, pp. 685-693, 1999.
[81] T .B. Singh, N. Marjanovic, G. J. Matt, S. Giines, N. S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwdiaue, S. Bauer, "High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films", Org. Electron, Vol. 6, pp. 105-115, 2004.
[82] C.W. Tang, "Two-layer organic photovoltaic cell", Appl.Phys, Vol. 48, pp. 183-188, 1986.
[83] C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, "Organic photovoltaics: concepts and realization", Springer, Vol. 60, pp. 654-660, 2003.
[84] C. J. Brabec, " Organic photovoltaics: technology and market", Sol. Energy. Mater. Sol. Cells , Vol. 83, pp. 273-278, 2004.
[85] A. J. Mozer, N. S. Sariciftci, T. A. Skotheim, J. R. Reynolds "Conjugated polymers", Mater. Res. Soc.Symp. P, Vol. 2, pp. 101-107, 2006.
[86] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, M. Chhowalla , "Conducting and transparent single-wall carbon nanotube electrodes for polymer—fullerene solar cells", Appl. Phys. Lett, Vol. 87, pp. 203-212, 2005
[87] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology", Adv. Funct. Mater, Vol. 15, pp. 1617-1624, 2005.
[88] M. Reyes-Reyes, K. Kim, D. L. Carroll, "High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1- (3-methoxycarbony1)-propy1-1-phenyl- (6,6) C61 blends", Appl. Phys. Lett, Vol.87, pp.506-514, 2005.
[89] M. Reyes-Reyes, K. Kim, J. Dewald, R. S. Lopez, A. Avadhanula, S. Curran, D. L. Carroll, "Meso-structure formation for enhanced organic photovoltaic cells", Org. Lett , Vol. 7, pp. 5749-5756, 2005.
[90] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, "High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", Nat. Mater, Vol. 4, pp. 864-871, 2005.
[91] G. Li, R. Zhu, Y. Yang, "Polymer solar cells" , Nat. Photonics, Vol. 6, pp. 153-159, 2012.
[92] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, "Plastic solar cells", Adv. Funct. Mater, Vol. 63, pp. 11-15, 2007.
[93] J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, "New physical insights of surfaces/ interfaces for bilayer organic solar cells" , Nature , Vol. 376, pp. 498-508, 1995.
[94] G. Blasse, G. Dirksen, A. Meijerink, E. Neeleman, W. Drenth, "Optically active phthalocyanines", Chem. Phys. Lett, Vol. 154, pp. 420-426, 1989.
[95] D. Adam, P. Schuhmacher, J. Simmerer, J. Haussling, K. Siemensmeyer, K. Etzbach, H. Ringsdorf, D. Haarer, "Discotic liquid crystals —self organizing moleculer wires", Nature , Vol. 371, pp. 141-148, 1994.
[96] A. Lux, G .G. Rozenberg, K. Petritsch, S. C. Moratti, B. Holmes, R. H. Friend, "Liquid crystalline phthalocyanines in organic solar cells", Syntetic. Met, Vol. 102, pp. 1776-1781, 1999.
[97] X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, "Tandem colloidal quantum dot solar cells employing a graded recombination layer", J. Nat. Photon, Vol. 5, pp. 480-484, 2011.
[98] Y. Bouligand, "Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xanthan) Columnar textures", J. Phys. ique, Vol. 41, pp. 1307-1313, 1980.
[99] M Carrasco-Orozco, W. C. Tsoi , M. O'Neill, M. P. Aldred, P. P Vlachos, S.M . Kelly, "new photovoltaic concept: liquid-crystal solar cells using a nematic gel template", Adv. Mater., Vol. 18, pp. 1754— 1758, 2006.
[100] R. Raffaelle, S. Castro, F. Hepp, Sh. Bailey, "Quantum Dot Solar Cells", progress in photovoltaic: research and application Prog. Photovolt, Vol. 10, pp. 433-439, 2002.
[101] A. Nozik,"Quantum dot solar cells", Physica. E, Vol.14, pp. 115 - 120, 2002.
[102] Y. Hu, B. Wang, J. Zhan, T. Wang, R. Liu, J. Zhang, "Synthesisand Photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes", Nano. Scale. Res. Lett, Vol. 8, pp. 222-229, 2013.
[103] A. Marti, L. Cuadra, A. Luque, "Quasi-drift diffusion model for the quantum dot intermediate band solar cell", IEEE Transactions on Electron Devices, Vol. 8, pp. 1632-1639, 2002.