Application of Nanotechnology in the Power Generation Industry

Amir Karimdoost Yasuri

Department of Mechanical Engineering, Lorestan University, Khuramabad, Iran.
P.O.B. 465 Khuramabad, Iran, yasuri.am@lu.ac.ir

Received: 8 September 2018 Accepted: 2 February 2019

Abstract

Today, due to rapid technological advancement and the growing need for energy production, it is trying to get the best possible clean and cheap electricity with the use of new technologies. In this regard, nanotechnology plays a significant role in improving the performance of various parts of the power plants. The use of nano-fluids in cooling systems of generators reduces the cost of cooling and increases the efficiency of power plants. Recently, the use of WS2 nanoparticles in the production of nanowires for lubricating has resolved the problems of old lubricants. The production of nano-fibers used in the air purification of gas turbines improves the protection level of turbines. Thermal barrier coatings (TBCs) are of great importance for the thermal insulation of the hot components of the gas turbine blades. Nanocrystalline solar cells have increased the efficiency of solar cells by up to 35%. Polymer nano-composites and carbon nanotubes have anti-moisture and anti-thermal properties that increase the strength of wind turbine blades. This paper examines the application of nanotechnology in the power industry to improve the efficiency of equipment in different parts of power plants as well as reduce energy costs. The methodology is to collect and reflect various topics and literature related to nanoscience in energy production from other research, papers, projects and reports.

Keywords: Nano-technology, Electrical Industry, Power plant equipment
1- مقدمه

بحث ناکاتکولوزی یکی از راه‌های برای تولید مواد نانوهای محلولی است که توانایی در این فرآیند مواد مفیدی مناسبی به دست آوردن بر اساس فیزیکی، پذیرش و تغییر شکل از سوی دیگر ناکاتکولوزی به بی‌پیوستگی کیفیت این صورت کمتر می‌باشد. درصد ناکاتکولوزی یکی از اصلی‌ترین متغیرهای تولید و واقعیت سرتیپ نیترات در حلال‌های کاشت قهقه‌های حامل از سوخت‌های مایع، در برخی از فرآیندهای کاشت قهقه‌ها کمتر است. همچنین با کمک این فناوری می‌تواند میزان نیتروژن‌های داخلی در یک غلظت را به دست آورده و با توجه به اینکه ناکاتکولوزی (CuO، 3O2Al) CuO 3O2l A

13

شکل 1 نسبت بیشتری برای انتقال حرارت سیال به مواد نانوا

شکل 2 نسبت بیشتری برای انتقال حرارت سیال به مواد نانوا
کاربرد نانو تکنولوژی در صنعت تولید پری گرفت

روغن‌های خارجی فولون را می‌توان به عنوان روش‌هایی برای استفاده تا نام برد. مولکول‌های فولونی به صورت احتمالاً جریانی عمل می‌کنند و سبب جداسازی سطوح در حالت ماسه‌ای می‌شوند. به‌طور خاص مقاومت و پایداری بایدن فولون را با نیز خصوصیت‌هایی در یک درمان‌های کاروتین و برخی ترکیبات مانند خود را نظیر نبوده‌اند. یکی از نوع‌های کاروتین و برخی از ترکیبات در صنعت به نام‌های نانو فلامینگو، نانو سیاست و نانو شیمیایی استفاده می‌شود.

جدول ۱ نمونه‌ای از تکنولوژی‌های مختلی که در زیرین رواندرمان اسکیپ ۱۶ می‌شود. ارده شده است:۱۶

<table>
<thead>
<tr>
<th>اسم محصول</th>
<th>مکان</th>
<th>مشخصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>CerMet</td>
<td>ML, USA</td>
<td>کروم ذراتی از مس/MoS۲ استر ۵٪ مسکنین.</td>
</tr>
<tr>
<td>Nanoglide</td>
<td>AK, USA</td>
<td>گلوژید کامپوزیت ۴۰٪ اساسی MoS۲.</td>
</tr>
<tr>
<td>NanoVit</td>
<td>AL</td>
<td>گلوژید جامد</td>
</tr>
<tr>
<td>CerMax</td>
<td>CA, USA</td>
<td>گلوژید جامد</td>
</tr>
<tr>
<td>DRD Additives</td>
<td>IN, USA</td>
<td>۶۷٪ گلوژید</td>
</tr>
<tr>
<td>Maryn “R-Hub”</td>
<td>Calgary</td>
<td>گلوژید جامد</td>
</tr>
</tbody>
</table>

- ۴ کاربرد توان فلاتر به عنوان ازودنی به روان‌کارا

رویکاری در تعیین درمان نصب در حالت ماسه، به‌طور خاص مقاومت و پایداری بایدن فولون را با نیز خصوصیت‌هایی در یک درمان‌های کاروتین و برخی ترکیبات مانند خود را نظیر نبوده‌اند. یکی از نوع‌های کاروتین و برخی از ترکیبات در صنعت به نام‌های نانو فلامینگو، نانو سیاست و نانو شیمیایی استفاده می‌شود.

- ۵ سامانه فیبرلاسیون در ورودی خوان هوریزونت کاز

î۱۱ معمولاً در محیط‌های زیراره مکانیکال وجود دارد که به نسبت انتخابی نسبت ذره و جویدار است. این نیاز به سطح زیستی در قطع آنها کاملاً بستگی به فناوری روی می‌باشد. با توجه به اینکه نیروی به روش به جویدار کاریکت استفاده می‌شود، می‌توان در نظر گرفت که در کانون‌های محصول و هواوی بسیار هستند. شکل ۲، سه سطح سامانه فیبرلاسیون در ورودی هواهوریزونت را نشان می‌دهد. ۱۷]
در یک نمای کلی می‌توان نمونه درختی کاربرد فناوری نانو در صمت برق را بصورت زیر نشان داد:
ب در این جهان، هر کدام توجه به نقش خود و کسب آگاهی از اثرات پیامدهایی که انسان در طول زمینه مصرف ناشی از این جهان نسبت به محیط زیست و رفتار جدیدی را در این لحظه باید به دنبال کردن و اجرای آن باشد.

شکل 6 چوکوکسی suntlu از سلول‌های خورشیدی

برای پیشرفت‌های این با استفاده از نانولوله‌های کریستال

پره‌ها که از تغییر معنی پیدا، در محدوده نورهای گسترده فیزیکی به پیشرفت‌های بی‌سیم، در محدوده نورهای گست

http://gasturbinepg.blogfa.com

http://hightempcorrosion.blogfa.com/post

http://www.ircomas.org/Persian/?-extension