مروری بر مطالعات و تحقیقات انجام شده در زمینه تولید انرژی الکتریکی با سیستم‌های خورشیدی شناور در دنیا

نوع مقاله: علمی-ترویجی

نویسندگان

1 گروه انرژیهای نو و محیط زیست دانشگاه تهران

2 گروه انرژیهای نو و محیط زیست، دانشکده علوم و فنون نوین دانشگاه تهران

3 استاد دانشکده برق، دانشگاه صنعتی امیر کبیر

4 گروه انرژی های نو و سیستم های انرژی-دانشکده علوم و فنون نوین-دانشگاه تهران

چکیده

افزایش چشمگیر تقاضای برق، کاهش سریع سوخت‌های فسیلی و همچنین نگرانی‌های زیست محیطی در سراسر جهان منجر به گسترش نیروگاه‌های خورشیدی در مقیاس وسیع شده‌است. سیستم خورشیدی شناور یک طراحی جدید برای نیروگاه‌های خورشیدی است. سیستم‌های خورشیدی شناور معمولا بر روی آبراهه‌های آب مانند دریاچه‌های طبیعی یا مخازن سدها نصب می‌شوند. این فن‌آوری از سال 2007 مورد توجه کشورهای مختلف قرار گرفته‌است. نیروگاه‌های خورشیدی شناور متوسط و بزرگ در چندین کشور مانند ژاپن، کره‌ی جنوبی، هند و ایالات متحده نصب شده‌اند. با توجه به مزایای نصب این سیستم‌ها از جمله کاهش تبخیر، استفاده از این سیستم‌ها در مناطق خشک و کم آب مانند کشور ما می‌تواند راه حلی برای کاهش بحران آب باشد. در این مقاله، به مرور مقالات انجام شده بر روی تولید انرژی این سیستم‌ها و کارایی آن‌ها پرداخته شده‌است. سپس، تاثیر استفاده از این سیستم بر روی کاهش تبخیر و کاهش انتشار گازهای گلخانه‌ای و همچنین بررسی مسائل اقتصادی این سیستم‌ها مورد مطالعه قرار گرفته ‌است.نتایج بررسی‌ مطالعات انجام شده نشان می‌دهد که بازدهی سیستم‌های خورشیدی شناور حدود 12 درصد بیش‌تر از سیستم‌های خورشیدی نصب شده بر روی زمین است. هم‌چنین این سیستم‌ها می‌توانند تا 90 درصد تبخیر سطحی آب را کاهش دهند.

کلیدواژه‌ها

موضوعات


- منابع

[1]          eia, “Electricity in the United States,” U.S. Energy Information Administration, 2017 .

[2]          I. Craig, A. Green, M. Scobie, and E. Schmidt, Controlling Evaporation Loss from Water Storages, no. 1000580/1. 2005, p. 207.

[3]          G. K. X. Melvin, “Experimental study of the effect of floating solar panels on reducing evaporation in Singapore reservoirs,” NATIONAL UNIVERSITY OF SINGAPORE, 2015.

[4]          S. Minamino, “floating solar plants: niche rising to the surface?,” Solarplaza, 2016 .

[5]          Y. Ueda, T. Sakurai, S. Tatebe, A. Itoh, and K. Kurokawa, “Performance Analysis of Pv Systems on the Water,” in 23rd European Photovoltaic Solar Energy Conference and Exhibition, 2008, no. September, pp. 1–5.

[6]          C. Ferrer-Gisbert, J. J. Ferrán-Gozálvez, M. Redón-Santafé, P. Ferrer-Gisbert, F. J. Sánchez-Romero, and J. B. Torregrosa-Soler, “A new photovoltaic floating cover system for water reservoirs,” Renew. Energy, vol. 60, pp. 63–70, Dec. 2013.

[7]          M. E. Taboada, L. Cáceres, T. A. Graber, H. R. Galleguillos, L. F. Cabeza, and R. Rojas, “Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling,” Renew. Energy, vol. 105, pp. 601–615, May 2017.

[8]          K. Trapani and M. Redón Santafé, “A review of floating photovoltaic installations: 2007-2013,” Prog. Photovoltaics Res. Appl., vol. 23, no. 4, pp. 524–532, Apr. 2015.

[9]          A. Sahu, N. Yadav, and K. Sudhakar, “Floating photovoltaic power plant: A review,” Renew. Sustain. Energy Rev., vol. 66, pp. 815–824, Dec. 2016.

[10]        S.-H. Kim, S.-J. Yoon, W. Choi, and K.-B. Choi, “Application of Floating Photovoltaic Energy Generation Systems in South Korea,” Sustainability, vol. 8, no. 12, p. 1333, Dec. 2016.

[11]        R. Cazzaniga, M. Cicu, M. Rosa-Clot, P. Rosa-Clot, G. M. Tina, and C. Ventura, “Floating photovoltaic plants: Performance analysis and design solutions,” Renew. Sustain. Energy Rev., vol. 81, pp. 1730–1741, Jan. 2018.

[12]        E. M. G. Rodrigues, R. Melício, V. M. F. Mendes, and J. P. S. Catalão, “Simulation of a solar cell considering single-diode equivalent circuit mode,” Renew. Energy Power Qual. J., pp. 369–373, May 2011.

[13]        M. Rosa-Clot, G. M. Tina, and S. Nizetic, “Floating photovoltaic plants and wastewater basins: an Australian project,” Energy Procedia, vol. 134, pp. 664–674, Oct. 2017.

[14]        T. S. Hartzell, “Evaluating potential for floating solar installations on Arizona water management infrastructure,” The University of Arizona, 2016.

[15]        B. Prouvost, “Creating the ultimate hybrid system by mixing solar energy and hydroelectricity,” renewableenergyfocus, 2017. .

[16]        T. WOODY, “Solar on the Water,” Retrieved from The New York Times, 2011. .

[17]        K. Trapani, S. Martens, K. Challagulla, S. Yong, D. Millar, and S. Maloney, “Water absorption characterisation, electrical reliability and mechanical testing of a submerged laminated a-Si thin film photovoltaic (PV) cells,” Microelectron. Reliab., vol. 54, no. 11, pp. 2456–2462, Nov. 2014.

[18]        M. Rosa-Clot and G. M. Tina, “Submerged PV Systems,” in Submerged and Floating Photovoltaic Systems, Elsevier, 2018, pp. 65–87.

[19]        R. Cazzaniga, M. Cicu, M. Rosa-Clot, P. Rosa-Clot, G. M. Tina, and C. Ventura, “Compressed air energy storage integrated with floating photovoltaic plant,” J. Energy Storage, vol. 13, pp. 48–57, Oct. 2017.

[20]        A. Lee, G. Shin, S. Hong, and Y. Choi, “A study on development of ICT convergence technology for tracking-type floating photovoltaic systems,” Int. J. Smart Grid Clean Energy, vol. 3, no. 1, pp. 80–87, 2014.

[21]        K. Trapani and D. L. Millar, “The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype,” Renew. Energy, vol. 71, pp. 43–50, Nov. 2014.

[22]        Y. Choi, N.-H. Lee, A. Lee, and K. Kim, “A study on major design elements of tracking-type floating photovoltaic systems,” Int. J. Smart Grid Clean Energy, vol. 3, no. 1, pp. 70–74, 2014.

[23]        Y.-G. Lee, H.-J. Joo, and S.-J. Yoon, “Design and installation of floating type photovoltaic energy generation system using FRP members,” Sol. Energy, vol. 108, pp. 13–27, Oct. 2014.

[24]        A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng., vol. 16, no. 1, pp. 81–87, Jan. 1996.

[25]        S. A. A. Kalogirou and Y. Tripanagnostopoulos, “Hybrid PV/T solar systems for domestic hot water and electricity production,” Energy Convers. Manag., vol. 47, no. 18–19, pp. 3368–3382, Nov. 2006.

[26]        K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J., vol. 4, no. 4, pp. 869–877, Dec. 2013.

[27]        A. Hasan, S. McCormack, M. Huang, and B. Norton, “Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics,” Energies, vol. 7, no. 3, pp. 1318–1331, Mar. 2014.

[28]        P. Hysek, “Methods to Reduce the Operating Temperature of Photovoltaic Cells,” Appl. Mech. Mater., vol. 820, pp. 224–229, Jan. 2016.

[29]        K. Trapani and D. L. Millar, “Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands,” Energy Conversion and Management, vol. 67. pp. 18–26, 2013.

[30]        M. Redón Santafé, J. B. Torregrosa Soler, F. J. Sánchez Romero, P. S. Ferrer Gisbert, J. J. Ferrán Gozálvez, and C. M. Ferrer Gisbert, “Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs,” Energy, vol. 67, pp. 246–255, Apr. 2014.

[31]        J. Song and Y. Choi, “Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea,” Energies, vol. 9, no. 2, p. 102, Feb. 2016.

[32]        K. Trapani and D. L. Millar, “Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire),” Environ. Prog. Sustain. Energy, vol. 35, no. 3, pp. 898–905, May 2016.

[33]        C. Solanki, G. Nagababu, and S. S. Kachhwaha, “Assessment of offshore solar energy along the coast of India,” Energy Procedia, vol. 138, pp. 530–535, Oct. 2017.

[34]        D. Mittal, B. K. Saxena, and K. V. S. Rao, “Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan,” in 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 2017, pp. 1–7.

[35]        M. Rosa-Clot and G. M. Tina, “The Floating PV Plant,” in Submerged and Floating Photovoltaic Systems, Elsevier, 2018, pp. 89–136.

[36]        R. Cazzaniga, M. Rosa-Clot, P. Rosa-Clot, and G. M. Tina, “Floating tracking cooling concentrating (FTCC) systems,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 000514–000519.

[37]        Y.-K. Choi and Y.-G. Lee, “A study on development of rotary structure for tracking-type floating photovoltaic system,” Int. J. Precis. Eng. Manuf., vol. 15, no. 11, pp. 2453–2460, Nov. 2014.

[38]        Y.-K. Choi, I.-S. Kim, S.-T. Hong, and H. Lee, “A study on development of azimuth angle tracking algorithm for tracking-type floating photovoltaic system,” Adv. Sci. Technol. Lett., vol. 51, no. 45, pp. 197–202, 2014.

[39]        G. Tina, R. Cazzaniga, M. Rosa-Clot, and P. Rosa-Clot, “Geographic and technical floating photovoltaic potential,” Therm. Sci., vol. 22, no. Suppl. 3, pp. 831–841, 2018.

[40]        G. D. Pimentel Da Silva and D. A. C. Branco, “Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts,” Impact Assess. Proj. Apprais., vol. 36, no. 5, pp. 390–400, Sep. 2018.

[41]        M. R. Santafé et al., “Implementation of a photovoltaic floating cover for irrigation reservoirs,” J. Clean. Prod., vol. 66, no. 1, pp. 568–570, Mar. 2014.

[42]        L. Liu, Q. Wang, H. Lin, H. Li, Q. Sun, and R. Wennersten, “Power Generation Efficiency and Prospects of Floating Photovoltaic Systems,” Energy Procedia, vol. 105, pp. 1136–1142, May 2017.

[43]        K. Trapani, D. L. Millar, and H. C. M. Smith, “Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies,” Renew. Energy, vol. 50, pp. 879–888, Feb. 2013.