مروری کوتاه بر اصلاح طیفی نور خورشید با استفاده از تبدیل کاهشی لومینسانس به منظور افزایش بازده سلول های خورشیدی

نوع مقاله : علمی-ترویجی

نویسندگان

1 عضو هیئت علمی گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه بجنورد، بجنورد، ایران

2 دانشجوی دکتری دانشکده مهندسی معدن، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

چکیده

اصلاح طیفی (تبدیل طیفی) نور، نوعی از تکنیک مدیریت فوتون‌ها به منظور افزایش بازده سلول‌های خورشیدی می‌باشد. روش‌های متفاوتی جهت تغییر انرژی و طول موج فوتون‌ها وجود دارد که شامل: 1- تبدیل فوتون‌هایی با انرژی کمتر و طول موج بیشتر به فوتون‌هایی با انرژی بیشتر و طول موج کمتر؛ 2- تبدیل فوتون‌هایی با انرژی بیشتر و طول موج کمتر به فوتون‌هایی با انرژی کمتر و طول موج بیشتر. روش دوم به یکی از دو مکانیسم تبدیل کاهشی (DC) و فوتولومینسانس قابل انجام می-باشد. استفاده از لایه تبدیل کننده کاهشی لومینسانس (LDS) راهکاری برای عملی کردن استفاده از روش دوم و بهبود پاسخ طیفی ضعیف سلول‌های خورشیدی در طول موج‌های کوتاه نور می‌باشد. لایه LDS قادر است تا فوتون‌های در محدوده nm 500-300 را جذب کرده و آن را در طول موج بالاتر که در آن سیستم فتوولتائیک پاسخ بهتری نشان می‌دهد، بازنشر کند. این مقاله مروری کوتاهی بر انواع تکنیک‌های اصلاح طیفی، مواد مورد استفاده در ساخت لایه LDS (اعم از مواد میزبان و تبدیل‌کننده طیفی) و تاثیر آن بر بازدهی سلول‌های خورشیدی مختلف می‌باشد. همچنین مسیر حرکت فوتون‌ها در یک لایه LDS مورد بررسی قرار گرفته است.

کلیدواژه‌ها


[1] Cavasinni, V., et al., A method to study light attenuation effects in wavelength shifting fibres. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004. 517(1-3): p. 128-138.
[2] Green, M.A., Third generation photovoltaics: solar cells for 2020 and beyond. Physica E: Low-dimensional Systems and Nanostructures, 2002. 14(1–2): p. 65-70.
[3] Klampaftis, E., et al., Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1182-1194.
[4] Richards, B.S., Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells, 2006. 90(9): p. 1189-1207.
[5] Bloembergen, N., Solid State Infrared Quantum Counters. Physical Review Letters, 1959. 2(3): p. 84.
[6] Ronda, C.R., Phosphors for lamps and displays: an applicational view. Journal of Alloys and Compounds, 1995. 225(1–2): p. 534-538.
[7] Green, M., Third Generation Photovoltaics, Springer, Berlin. 2003: Springer, Berlin.
[8] Delavari Amrei, H., et al., An integrated wavelength-shifting strategy for enhancement of microalgal growth rate in PMMA- and polycarbonate-based photobioreactors. European Journal of Phycology, 2014. 49(3): p. 324-331.
[10]    Delavari Amrei, H., et al., Using fluorescent material for enhancing microalgae growth rate in photobioreactors. Joumal of Applied Phycology, 2014: p. 1-8.
[11]    Mohsenpour, S.F. and N. Willoughby, Luminescent photobioreactor design for Improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology, 2013. 142(O): p. 147-153.
[12]    Wondraczek, L. , et al., Solar spectral conversion for improvmg the photosynthetic activity in algae reactors. Nat Commun, 2013. 4.
[13]           Strilmpel, C., et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar Energy Materials and Solar Cells, 2007. 91 (4): p. 238-249.
[14]           Shalav, A., B.S. Richards, and M.A. Green, Luminescent layers for enhanced silicon solar cell performance: Up-conversion. Solar Energy Materials and Solar Cells, 2007. 91 (9): p. 829-842.
[15]           light, U.a.s.s.c.tm.u.o.i.; Available from: http://wwwise- fraunhofer.de/en/press-and-media/pressreleases/presseinformationen-2013/stefan-fischer-receives-beststudent-presentation-award.
[16]    van Sark, W.G.J.H.M., Luminescent solar concentrators — A low cost photovoltaics alternative. Renewable Energy, 2013. 49(0): p. 207-210.
[17]    Goetzberger, A. and W. Greubel, Solar energy conversion with flourescent collectors. Appl. Phys., 1977. 14: p. 123-129.
[18]           Webber, W.H. and J. Lambe, Limitting efficiencies of ideal single and multiple energy gap terrestrial solar cell. Appl. Opt. 1976. 15: p. 2299.
[19]    Hovel, H.J., R.T. Hodgson, and J.M. Woodall, The effect of fluorescent wavelength shifting on solar cell spectral response. Sol. EnergyMater, 1979. 2: p. 19-29.
[20]    Rowan, B.C., L.R. Wilson, and B.S. Richards, Advanced Material Concepts for Luminescent Solar Concentrators. Selected Topics in Quantum Electronics, IEEE Journal of, 2008. 14(5): p. 1312-1322.
[21]    Bendig; M., et al. Simulation of fluorescent concentrators. in Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on. 2008.
[22]           Richards, B.S. and K.R. McIntosh, Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules  via luminescence down-shifting: rav•tracmu simulations. Pruress in Photovoltaics: Research and Applications, 2007. 1501): p. 27-
[23]    Viehmann, W. and R.L. Frost, Thin film waveshifter coatings for fluorescent radiation converters. Nuclear Instruments and Methods, 1979. 167(3): p. 405-415.
[24]    Inoue, S., et al., Lumienscence property and application ofrare earth complexes Incorporated inORMOSlL matrices. Kidorui (Rare Earth), 1997. 30: p. 190-191.
[25]    Kawano, K , et al., Application of rare-earth complexes for photovoltaic precursors. Sol. Energy Mater. Sol. C, 1997. 48: p. 35—41.
[26]    Kawano, K. , N. Hashimoto, and R. Nakata, Effect of solar cell efficiency of flourescence of rare-aerth ions- Mater. Sci. Forum, 1997. 239-241: p- 311-314.
[27]    Marchionna, s., et al., Photovoltaic quantun efficiency enhancement by light harvesting of organo-lanthanide complex. J. Lumin., 2006. 118: p. 325-329.
[28]    Maruyama, A., K. Enomoto, and K. Shirasawa, Solar cell module colored with flourescent plate. Sol. Energy Mater. Sol. C, 2000. 64(3): p. 269-278.
[29]           Maruyama, T. and Y. Shinyashiki, Solar cell coated with flourescent coloring agent- J. Electrochem- Soc. 145: p. 2955-2957.
[30]           Czanderna, A.W. and FJ. Pern, Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review; sol. Energy Mater. Sol. C, 1996. 43: p. 101-180.
[31]    Richard, B.S. and A. Shalav; The role of polymers in the lummescence conversion of sunlight for enhanced solar cell performance. Synthetic Metals, 2005. 154(1-3): p. 61-64.
[32]    Strümpe[, C., et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar Energy Materials and Solar Cells, 2007. 91 (4): p. 238-249.
[33]           van Sark, W.G.J.H.M., Simulating performance of solar cells with spectral downshifting layers. Thin Solid Films, 2008.516(20): p- 6808-6812.
[34]    van Sark, W.G.J.H.M., et al., Enhancing solar cell efficiency by using spectral converters. Solar Energy Materials and Solar cells, 2005. 87(1-4): p. 395-409.
[35]    Seybold, G. and G. Wagenblast, New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes and Pigments, 1989. 11(4): p. 303-317.
[36]    Mansour, A.F., On enhancing the efficiency of solar cells and extending their performance life. Polymer Testing, 2003. 2205): p. 491-495.
[37]           Sarti, D, F. Le Poull, and P. Gravisse, Transfonnation du rayonnement solaire par fluorescence: Application a l'encapsulation des cellules. Solar Cells, 1981. 4(1): p- 25-35.
[38]           Zakhidov, R.A. and A-I. Koifman, Solar cell with a protecting coating. Appl. sol. Energy 1994. 30(4): p. 22-25.
[39]           Marchionna, S., et al., Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes. Journal of Luminescence, 2006. 118(2): p. 325-329.
[40]    van Sark, W.G.J.H.M., et al., Vlodeling improvement of spectral response of solar cells by deployment of spectral converters containing semiconductor nanocrystals. Semiconductors, 2004. 38(8): p. 962-969.
[41]    McIntosh, K.R., et al., Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent downshifting layer. Prog. Photovolt: Res. Appl- 2008.
[42]    Yamada, K., Y. Wada, and K. Kawano, Improvement of efficiency of solar cells by application of the rare earth ions doped fluorescent glass. Kidorui (Rare Earths) 2000. 36: p. 252-253.
[43]    Stan, M. , et al., Very high efficiency triple junction solar cells grown by MOVPE. Joumal of Crystal Growth, 2008. 310(23): p. 5204-5208.
[44]    Byung-Chul, H. and K. Katsuyasu, Organic Dye-Doped Thin Films for Wavelength Conversion and Their Effects on the Photovoltaic Characteristics of CdS/CdTe Solar Cell- Japanese Journal of Applied Physics, 2004. 43(4R): p. 1421.
[45]    Hong, B.C. and     Kawano, PL and PLE studies ofKMgF3:Sm crystal and the effect of its wavelength conversion on CdS/CdTe solar cell. Solar Energy Materials and Solar Cells, 2003. 80(4): p. 417432.
[46]    Maruyama, T. and R. Kitamura, Transformations of the wavelength of the light incident upon solar cells. Solar Energy Materials and Solar cells, 2001. 69(3): p. 207-216.
[47]    Steudel, E, et al., Luminescent borate glass for efficiency enhancement of CdTe solar cells. Journal of Luminescence, 2015. 164: p. 76-80.
[48]    song, P., C. Zhang, and P. Zhu, Eu3+-Mn2+-doped bifunctional glasses with solar photon downshifting: Application to CdS/CdTe solar cells. Journal of Alloys and Compounds, 2016. 661: p. 14-19.