طراحی سیستم تولید توان به کمک روش هیبرید باد و خورشید و ذخیره سازی آن برای مصرف مسکونی

نوع مقاله : مقاله ترویجی

نویسندگان

1 استاد‌یار، دکترای مهندسی مکانیک، دانشگاه تفرش، تفرش تفرش، 39518-79611.

2 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه کاشان، کاشان

3 دانشجوی کارشناسی ارشد، مهندسی هوافضا، دانشگاه سمنان، سمنان

4 کارشناسی ارشد، مهندسی مکانیک، دانشگاه تفرش، تفرش

چکیده

سیستم انرژی تجدید پذیر هیبرید ترکیبی از سیستم­های انرژی تجدیدپذیر باد و خورشید و سیستم ذخیره انرژی می­باشد که در دهه های اخیر برای تامین انرژی ساختمان­ها از آن استفاده می­شود. در این تحقیق با توجه به شرایط جغرافیایی محل و میزان انرژی برق مصرفی ساختمان خوابگاهی مدل سیستم تامین انرژی هیبرید مناسب ساختمان شامل توربین بادی، پنل­های فتوولتائیک، باتری ذخیره­ساز انرژی و مبدل در نظر گرفته شده است و با تحلیل و شبیه­سازی انواع سیستم انرژی هیبرید طراحی شده با ترکیب ابعاد مختلف اجزاء سیستم هیبریدی طراحی شده و بررسی آن از لحاظ اقتصادی، سیستم هیبرید مناسب برای تامین انرژی برق ساختمان طراحی و مدلسازی شده است و طرح مناسب برای تامین انرژی برق مصرفی ساختمان به روش سیستم انرژی هیبرید به دست آمده است.

کلیدواژه‌ها


 [1]   C. Milan, C. Bojesen, M.P. Nielsen. A Cost Optimization Model for 100%    Renewable Residential Energy Supply System. Energy, Vol. 48, No, 1, pp.            118-127, 2012.
[2]    A.J. Marszel, P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, et al.  Zero Energy Building-A Review of Definition and Calculation.       Methodologies, Energy Build Vol. 43, No. 4, pp. 971-979, 2011.
[3]    M. Rouholamini, M. Mohammadian. Energy Management of a Grid-Tied Residential-Scale Hybrid Renewable Generation System Incorporating Fuel Sell and Electrolyzer. Energy and Buildings Vol. 102, pp. 406-416, 2015.
[4]    H. Dagdougui, R. Minciardi, A. Ouammi, M. Robba, R. Sacile, Modeling and Optimization of a Hybrid System for the Energy Supply of a “Green” Building. Energy Convers Manag Vol. 64, pp. 351-363, 2012.
 [5]   S. Prasad, V.K. Reddy, C.H. Saibabu. Integration of Renewable Energy Sin Zero Energy Building with Economical and Environmental Aspect by Using HOMER. Int J Adv Eng Sci Technol Vol. 9, No. 2, pp. 212-217, 2011.
[6]    B. Rezaie, E. Esmailzadeh, I. Dincer. Renewable Energy Options for Building Case Studies, Energy Build, Vol. 43, No. 1, pp. 56-65, 2011.
[7]    E. Fabrizo. M. Filippi, J. Virgone. An Hourly Modelling Framework for the Assessment of Energy Sources Exploitation and Energy Converts Selection and Sizing in Buildings. Energy build, Vol. 41, No. 10, pp. 1037-1050, 2009.
[8]    R. Ooka, K. Komamura. Optimal Design Method for Building Energy Systems Using Genetic Algorithms. Build Environ 44 (7) (2009) 1538-1544.
[9]    A. Hassoun, I. Dincer. Development of Power System Designs for a Net Zero Energy House. Energy Build, Vol, 73, pp. 120-129, 2014.
[10]  NASA Surface Meteorology and Solar Energ, (http://www.nasa.gov).
[11] M. Abarkan, F. Errahimi, N.K. M’Sirdi, A. Naamene. Analysis of energy consumption for a building using wind and solar energy sources. Energy procedia Vol.42, pp. 567-576, 2013.
[12]  M. Mousavi Badejani, M.A.S. Masoum and M. Kalanta. Optimal Design and Modeling of Stand-Alone Hybrid PV-Wind Systems. Proc. Int. Conf. on Power Engineering. Australasia, pp. 1-6, 2007.
[13]  A. Kashefi Kaviani, G.H. Riahy, SH.M. Kouhsari. Optimal Design of a Reliable Hydrogen-based Stand-alone Wind/PV Generation System. Proc. Int. Conf. on Optimization of Electrical and Electronic Equipment, pp. 413-418, 2008.
 [14]               M.H. Nehrir. A Course on Alternative Energy Wind/PV/Fuel Cell Power Gerneration, IEEE Power Engineering Society General Meeting, pp. 6, 2006.
[15]  M. saad Alam, D.W. Gao. Modeling and Analysis of a Wind/PV/Fuel Cell
         Hybrid Power System in HOMER, Proc. Int. Conf. on Industrial Electronics and Applications, pp. 1594-1599, 2007.
 [16]               C. Wang, and M.H. Nehrir. Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Trans. on Energy Conservation, Vol. 23, No. 3, 2008.
[17]  L. Wang, C. Singh, PSObased Hybrid Generation System Design Incorporating Reliability Evaluation and Generation/Load Forecasting. Proc. Int. Conf. on Power Tech, pp. 1392-1397, 2007.
[18]  D.B. Nelson, M.H. Nehrir, C. Wang. Unit Sizing of Stand-Alone Hybrid Wind/PV/Fuel Cell Power Generation Systems. IEEE Power Engineering Society General Meeting, Vol.3, pp. 2116-2122, 2005.{Carey, 1998 #8}
[19]  F. Bonanno, A. Consoli, A. Raciti, B. Morgana, U. Nocera. Transient Analysis of Integrated Diese Wind Photovoltaic Generation Systems. IEEE Trans. On Energy Consversion, Vol. 14, No. 2, 1999.
[20]  T. Zhou, B. Francois. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy, Vol. 34, pp. 21-30, 2009.
[21]  D. Ipsakisa, S. Voutetakis, P. Seferlis, F. Stergiopoulos, C. Elmasides. Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, pp. 1-15, 2008.{Carey, 1998 #8}