کاربرد یک روش چندهدفه کاربرمحور جهت مدیریت انرژی در خانه هوشمند با حفظ حریم مصرف کنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، مهندسی برق-قدرت، واحد یادگار امام خمینی(ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه برق-قدرت، دانشکده مهندسی برق، واحد یادگار امام خمینی(ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

موضوع مدیریت انرژی در خانه های هوشمند از نظر نحوه ایجاد توازن بین حریم خصوصی کاربران وکاهش هزینه های انرژی، در سالهای اخیر مورد توجه قرار گرفته است. در همین راستا در این مقاله، یک رویکرد چند هدفه کاربرمحور، که هزینه های انرژی را کمینه و رعایت حریم خصوصی مصرف کننده را بیشینه سازد، مورد مطالعه قرار گرفته است. در این پژوهش یک خانه هوشمند مجهز به سیستم مدیریت انرژی، مولد فتوولتائیک، ذخیره‌ساز انرژی الکتریکی (باتری)، لوازم خانگی هوشمند و پاسخگو به قیمت برق در نظر گرفته شده است که این مجموعه توانایی تزریق توان الکتریکی به شبکه‌ی بالادست را نیز دارد. این چارچوب به یک مسئله بهینه سازی چند هدفه منتهی می شود که در آن دو هدف فوق الذکر به صورت دو بعد مجزا مورد بررسی قرار می گیرند. برای حل مسئله، الگوریتم بهینه سازی ازدحام ذرات(PSO) استفاده شده است که از جستجوی تصادفی برای برنامه ریزی لوازم خانگی و کنترل باتری ها بر مبنای کاربرد لوازم انعطاف پذیر در خانه های هوشمند استفاده می کند. مطالعات موردی نشان می دهد که روش پیشنهادی می تواند علاوه بر کاهش هزینه انرژی در حدی منطقی و قابل قبول، حریم خصوصی کاربران را نیز به میزان قابل ملاحظه ای رعایت نماید. در نهایت نتایج عددی حاصل از شبیه‌سازی مورد تحلیل و ارزیابی قرار گرفته است که کارآمدی روش پیشنهادی را نشان می دهد.

کلیدواژه‌ها


[1]S. Lee, B. Kwon, and S. Lee, "Joint energy management system of electric supply and demand in houses and buildings," IEEE Transactions on Power Systems, vol. 29, pp. 2804-2812, 2014.
[2]H. T. Nguyen, D. T. Nguyen, and L. B. Le, "Energy management for households with solar assisted thermal load considering renewable energy and price uncertainty," IEEE Transactions on Smart Grid, vol. 6, pp. 301-314, 2015.
[3]   H.-C. Sun and Y.-C. Huang, "Optimization of power scheduling for energy management in smart homes," Procedia engineering, vol. 38, pp. 1822-1827, 2012.
[4]   M. Braham, T. Miller, A. E. Duerr, M. Lanzone, A. Fesnock, L. LaPre, et al., "Home in the heat: dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development," Biological Conservation, vol. 186, pp. 225-232, 2015.
[5]   M. Santamouris, C. Cartalis, A. Synnefa, and D. Kolokotsa, "On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review," Energy and Buildings, vol. 98, pp. 119-124, 2015.
[6]   A. B. Haney, T. Jamasb, L. M. Platchkov, and M. G. Pollitt, "Demand-side management strategies and the residential sector: lessons from international experience," The Future of Electricity Demand: Customers, Citizens and Loads, 2010.
[7]   P. Du and N. Lu, "Appliance commitment for household load scheduling," IEEE transactions on Smart Grid, vol. 2, pp. 411-419, 2011.
[8]   K. Clement-Nyns, E. Haesen, and J. Driesen, "The impact of charging plug-in hybrid electric vehicles on a residential distribution grid," IEEE Transactions on power systems, vol. 25, pp. 371-380, 2010.
[9]   X. Guan, Z. Xu, and Q.-S. Jia, "Energy-efficient buildings facilitated by microgrid," IEEE Transactions on smart grid, vol. 1, pp. 243-252, 2010.
[10]N. Batista, R. Melício, J. Matias, and J. Catalão, "Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid," Energy, vol. 49, pp. 306-315, 2013.
[11]K. M. Tsui and S.-C. Chan, "Demand response optimization for smart home scheduling under real-time pricing," IEEE Transactions on Smart Grid, vol. 3, pp. 1812-1821, 2012.
[12]Z. Hong, P. Li, and W. Jingxiao, "Context-aware scheduling algorithm in smart home system," China Communications, vol. 10, pp. 155-164, 2013.
[13]M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, "Coordinated scheduling of residential distributed energy resources to optimize smart home energy services," IEEE Transactions on Smart Grid, vol. 1, pp. 134-143, 2010.
[14]M. H. K. Tushar, C. Assi, M. Maier, and M. F. Uddin, "Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances," IEEE Transactions on Smart Grid, vol. 5, pp. 239-250, 2014.
[15]A. Sleman and R. Moeller, "SOA distributed operating system for managing embedded devices in home and building automation," IEEE Transactions on Consumer Electronics, vol. 57, 2011.
[16]Z. Zhao, W. C. Lee, Y. Shin, and K.-B. Song, "An optimal power scheduling method for demand response in home energy management system," IEEE Transactions on Smart Grid, vol. 4, pp. 1391-1400, 2013.
[17]Y.-Y. Hong, J.-K. Lin, C.-P. Wu, and C.-C. Chuang, "Multi-objective air-conditioning control considering fuzzy parameters using immune clonal selection programming," IEEE Transactions on Smart Grid, vol. 3, pp. 1603-1610, 2012.
[18]A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian, "Optimal smart home energy management considering energy saving and a comfortable lifestyle," IEEE Transactions on Smart Grid, vol. 6, pp. 324-332, 2015.
[19]M. Beaudin and H. Zareipour, "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, vol. 45, pp. 318-335, 2015.
[20]Z. Wu, S. Zhou, J. Li, and X.-P. Zhang, "Real-time scheduling of residential appliances via conditional risk-at-value," IEEE Transactions on Smart Grid, vol. 5, pp. 1282-1291, 2014.
[21]Y. Iwafune, T. Ikegami, J. G. da Silva Fonseca Jr, T. Oozeki, and K. Ogimoto, "Cooperative home energy management using batteries for a photovoltaic system considering the diversity of households," Energy Conversion and Management, vol. 96, pp. 322-329, 2015.
[22]Y. Wang, B. Wang, C.-C. Chu, H. Pota, and R. Gadh, "Energy management for a commercial building microgrid with stationary and mobile battery storage," Energy and Buildings, vol. 116, pp. 141-150, 2016.
[23]L. Chuan and A. Ukil, "Modeling and validation of electrical load profiling in residential buildings in Singapore," IEEE Transactions on Power Systems, vol. 30, pp. 2800-2809, 2015.
[24]A. Soares, Á. Gomes, C. H. Antunes, and C. Oliveira, "A Customized Evolutionary Algorithm for Multiobjective Management of Residential Energy Resources," IEEE Transactions on Industrial Informatics, vol. 13, pp. 492-501, 2017.
[25]F. Wang, L. Zhou, H. Ren, X. Liu, S. Talari, M. Shafie-khah, et al., "Multi-objective optimization model of source-load-storage synergetic dispatch for building energy system based on TOU price demand response," IEEE Transactions on Industry Applications, 2017.
[26]O. Elma, A. Taşcıkaraoğlu, A. T. İnce, and U. S. Selamoğulları, "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, vol. 134, pp. 206-220, 2017.
[27]A.-H. Mohsenian-Rad and A. Leon-Garcia, "Optimal residential load control with price prediction in real-time electricity pricing environments," IEEE transactions on Smart Grid, vol. 1, pp. 120-133, 2010.
[28]E. Gavanidous and A. Bakirtzis, "Design of a stand alone system with renewable energy sources using trade off methods," IEEE Transactions on Energy Conversion, vol. 7, pp. 42-48, 1992.
[29]F. Lasnier, Photovoltaic engineering handbook: Routledge, 2017.
[30]S. Nistor, J. Wu, M. Sooriyabandara, and J. Ekanayake, "Cost optimization of smart appliances," in Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and Exhibition on, 2011, pp. 1-5.
[31]H.-H. Chang, W.-Y. Chiu, and C.-M. Chen, “User-centric multiobjective approach to privacy preservation and energy cost minimization in smarthome,”IEEE Syst. J., vol. 13, no. 1, pp. 1030–1041, Mar. 2019.
[32]J. Kennedy, "Particle swarm optimization," in Encyclopedia of machine learning, ed: Springer, 2011, pp. 760-766.